Yale University
Innovation Pipeline 2019
Technologies for Partnering

Office of Cooperative Research
ocr.yale.edu
WHAT WE DO

- Identify and foster innovative technologies with significant market potential
- Help Yale researchers navigate the patent process
- Connect Yale researchers with academic and industry partners
- Introduce startups to funding sources
- Build startup management teams
- Provide commercialization workshops & skill-building to the research community

INNOVATION & ENTREPRENEURSHIP

BLAVATNIK FUND
- 70+ applications
- 13 finalists
- 5 awards for $1.5MM in awards

DEALS
- 71 deals for consideration
- 10+ deals/business development team member (top quartile of hype tech)
- 15 including major deals (potential for $1M in royalties or impacting 1 million lives)

ENTREPRENEURIAL ACCOMPLISHMENTS
- OCR launched 11 faculty new ventures, $36M in aggregate funding
- More than 50 New Haven startups based on Yale IP raised more than $1B in VC and $11B in Public Markets
- 40 prospective startups had meetings with investors, up from 28 in 2017, a 43% increase

INNOVATION FUND
- Since 2013 launch, 18 startups have received $100,000 each
- These startups have attracted $103M in additional funding, a leverage of 56:1
Oncology
Quantitative Immunofluorescence was used to examine Tumor-Infiltrating Lymphocytes (TIL) in pretreatment NSCLC tumor samples.

- TIL levels of CD3, Granzyme B and Ki67 revealed a dormant phenotype of TIL’s in pretreatment tumor samples that correlated with clinical response to Checkpoint Inhibitor therapy.
- Patients with tumors displaying a combination of high CD3, low Granzyme B and low Ki67 levels displayed the best response to Checkpoint Therapy.
- Early evaluation of NSCLC tumors with this method may select patients most likely to benefit from these therapies.
- A PCT patent application has been filed.

Kaplan-Meier graphical analysis of 3-year progression free survival and overall survival of lung cancer cases treated with immune checkpoint blockers according to their TIL phenotype panel:
- Type 1: Low CD3
- Type 2: High CD3 + Low Granzyme B + Low Ki67
- Type 3: High CD3 + High Granzyme B OR High Ki67

The number of cases in each group and the log-rank P value is indicated in the chart.

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research
(203) 785-3846, Christopher.unsworth@yale.edu
Targeted Therapy to Solid Tumors

Tumor Activated Permeability (TAP) Therapy is a small molecule platform targeting drug delivery to all solid tumors via a universal property of solid tumors: Acidity.

- Tumor acidity shown to be far stronger than previously accepted, via improved pH probes
- Acidity universal in solid tumors, 95% of cancers
- The TAP platform uses a medicinal chemistry strategy to control drug distribution, targeting tumors and preventing uptake in healthy tissues
- Library of novel weak acid moieties with pK_A tuned to titrate between tumor and healthy pH
- Improves the drug’s therapeutic index
- Applicable to most small molecule drugs
- IP remains unpublished, provisional patents filed

Bases target healthy cells **Acids target solid tumors**

pH affects cell permeability of weakly-ionic drugs

TAP-doxorubicin: Same efficacy at NOAEL as doxorubicin at MTD

- BRCA1-deficient ovarian cancer PEO1 cells treated at tumor pH are highly sensitive to TAP-targeted DNA-crosslinkers, while the BRCA-repaired sub-strain, PEO4, is both more resistant and less exposed to TAP-therapy at healthy tissue pH. This models a BRCA patient (heterozygous systemically and BRCA-deficient in the tumor).

Targeted TAP-alkylators: >40x TI in BRCA mutant ovarian cancer

Yale Contact: Valarie Truax, Ph.D., MBA Yale University Office of Cooperative Research
(203) 737-1689, Valarie.truax@yale.edu
A short hairpin RNA, alone or in combination with anti-PD1 therapy, activates Rig-I and stimulates immune response

- Stem Loop RNA 14 (SLR14) induces interferon production as a RIG-I agonist
- Efficacy demonstrated in mouse in vivo tumor models
- Combination augments efficacy of anti PD-1 therapy
- Potential use as an anti-viral agent
- Innovators: Anna Pyle, Ph.D. Akiko Iwasaki, Ph.D.
Using x-ray crystallography, we discovered a previously unknown knob-pocket mechanism critical for intermediate filament (IF) assembly into tetramer building blocks. Mutation of knob residues eliminated tetramer formation.

Vimentin (V) is upregulated in human cancers and is associated with metastasis of cancers. Keratin (K) IFs are upregulated in human cancers and are associated with cancer proliferation. Despite Ks being commonly used in pathology to immunohistochemically identify tumors, there are no anti-cancer drugs currently targeting Ks or other IFs.

Currently, there are no reliable ways to prevent cancer metastasis. We are developing first-in-class anti-cancer treatments by disrupting the K-V IF cytoskeleton.

Our first product will be topical and target Actinic Keratosis (AK) and Squamous Cell Carcinoma (SCC).

Lead Innovator: Christopher Bunick, M.D.
IP Status: PRV application filed in 2018

AK/SCC Prevalence of ~40 M
Cost of treatment >$1 Billion USD/yr
Neutralizing antibodies to OCR6325 are potential immune therapeutic agents to treat cancers that overexpress a novel soluble target expressed in epithelia (top figure).

CDRs are transferable for humanization.

In vivo small animal studies show that neutralization of the soluble protein target significantly reduces tumor burden in established tumors (both figures).

OCR6325 is a promising immunotherapeutic target for treating epithelial cancers.

Antibodies are to conserved epitope in human/mouse.

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu
Programmable self-arming toxins for better antibody–drug conjugates

- About Self-Arming Warheads (SAWs)
 - SAWs caged as stable, inert Ab cargos inactive until endocytosis
 - Predicted reduced off-target toxicity:
 - activated SAWs are cell-impermeable
 - Potent (< 100 nM activity)

- Total synthesis at high efficiency
 - Total synthesis facilitates novel chemistry
 - Convergent, high-yielding route to entire framework
 - Few chromatographic purifications
 - Highly amenable to SAR
 - Complete synthetic control
 - Readily conjugated

- OCR6808 IP Status:
 - ADC applications unpublished
 - Provisional patents filed
 - Both available under CDA

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Antibodies currently approved for cancer therapy lack the ability to directly penetrate into cells.

3e10 is a cell-penetrating anti-DNA antibody with clinical data for another indication that has been identified as a therapeutic for the treatment of cancer.

Active as a single agent against tumors with deficits in DNA repair, e.g. BRCA mutations

Significantly enhances sensitivity to DNA-damaging therapies (e.g. radiation, doxorubicin).

Inventors: James Hansen, Peter Glazer

IP status: PCT/US2015/047174 filed

References:
Weisbart et al., 2015, Sci Rep
Hansen et al., 2012, Sci Transl Med

As shown above, a mouse xenograft model using U87 human glioma cells demonstrate that the cell-penetrating antibody synergizes with doxorubicin in vivo.
Structure-based design of MIF Antagonists

(a) Structure-based design with validated target

\[\text{MIF: } \text{Macrophage migration Inhibitory Factor is a pro-inflammatory cytokine} \]

Clinically Validated Target: anti-MIF antibodies & MIF KO’s have in vivo activity in multiple cancer and inflammatory indications
- cancer (e.g., prostate, colon, lung, melanoma)
- rheumatoid arthritis, sepsis, atherosclerosis, asthma, and ARDS

Two Diverse Highly Potent Series by Design (a):
- SAR Yield: ~400 compounds, low-nM MIF-binding
- ~1000x more potent than others’ antagonists

Commercial: both series are drug-like with economical synthesis routes

HitProfiling and CYP450s: clean/excellent metabolic stability

Biologically Active (b): PC3 prostate cancer cells

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
OCR 6901A: A Novel piRNA-based Drug Candidate for Hepatocellular Carcinoma (HCC)

PIWI-interacting RNAs (piRNAs), a class of small noncoding RNAs, stabilize the genome at transcriptional and post-transcriptional levels. We identified and tested a number of tissue and cancer-type specific piRNAs as potential therapeutic candidates.

We profiled the expression of >23,000 piRNAs in the liver tissue and identified piRNAs that are under- or over-expressed in liver cancer relative to normal liver tissue (red dots in Fig.1A). We have demonstrated anti-cancer effects of down-regulated piR-37213-L01 both *in vitro* (cell proliferation, and colony formation) (Figure 1) and *in-vivo* (xenograft mouse models in Figure 2). The **anti-cancer effect of piR-37213-L01** was **highly specific for liver cancer** and had no effect on other cancer types tested (breast, lung, glioma, prostate, etc.). Work involving testing piR-37213-L01 in PDX mouse models and uncovering the mechanism of action is under way.

Lead Innovator: Yong Zhu, Ph.D.

IP status: PCT/US17/19741 (50+ specific piRNA sequences for several cancer types).

References: Fu *et al.* 2015; Jacobs *et al.* 2016, Jacobs *et al.* 2018

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research

(203) 785-4099, lolahon.kadiri@yale.edu
PIWI-interacting RNAs (piRNAs), a class of small noncoding RNAs, stabilize the genome at transcriptional and post-transcriptional levels. We identified and tested a number of tissue and cancer-type specific piRNAs as potential therapeutic candidates.

We profiled the expression of >23,000 piRNAs in the glioma and normal brain tissues and demonstrated anti-cancer effects of down-regulated piR-8041 both in vitro (cell proliferation, and colony formation) (Figure 1) and in-vivo (xenograft mouse models in Figure 2). The anti-cancer effect of piR-8041-L01 was highly specific for GBM cancer and had no effect on other cancer types tested (breast, lung, liver, prostate, etc.). Functional analyses suggested that piR-8041 reduces cell proliferation primarily via induction of cell cycle arrest at the G1/S checkpoint, as well as induction of apoptosis.

Figure 1. Anti-GBM effect of piR-8041 in vitro. A) U87 cell proliferation following transfection of piRNAs underexpressed. B) NHA, A172, and U87 cell proliferation following piR-8041 upregulation. C) U87 colonies formed in soft agar 21 days after piR-8041 or NC transfection. D) U87 cell viability at six days following one (day 0 only) or two (day 0 and day 3) piR-8041 treatments.

Figure 2. piR-8041 reduces tumor growth by ~50%. Images of representative mice from each treatment group on day 10 after tumor implantation.

Lead Innovator: Yong Zhu, Ph.D.
IP status: PCT/US17/19741 (50+ specific piRNA sequences for several cancer types).
References: Fu et al. 2015; Jacobs et al. 2016, Jacobs et al. 2018

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4099, lolahon.kadiri@yale.edu
Circulating autocatalytic anti-DNA antibody 3e10

- **Background:** A key feature of the tumor microenvironment, compared to healthy tissue, is the presence of a comparatively larger amount of extracellular DNA from actively dividing, apoptotic or necrotic tumor cells.

- Circulating anti-DNA **autoantibody 3e10** penetrates cell nuclei. When it is conjugated to the surface of nanoparticles, it targets the nanoparticles to the extracellular DNA in the tumor environment.

- The conjugate works in an autocatalytic manner that increases in efficiency with time and treatment.

- **Innovators:** James Hansen and Jiangbing Zhou

- **IP status.** Provisional patent application filed

- **Reference:** Chen *et al.* (2016) Oncotarget

Synthesized DOX-loaded PLGA nanoparticles with surface-conjugated 3E10EN have a significantly greater effect on tumors than DOX-NPs or DOX alone.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Using x-ray crystallography, we discovered a previously unknown knob-pocket mechanism critical for intermediate filament (IF) assembly into tetramer building blocks. Mutation of knob residues eliminated tetramer formation.

Vimentin (V) is upregulated in human cancers and is associated with metastasis of cancers. Keratin (K) IF are upregulated in human cancers and are associated with cancer proliferation. Despite K being commonly used in pathology to immunohistochemically identify tumors, there are no anti-cancer drugs currently targeting K or other IF.

Currently, there are no reliable ways to prevent cancer metastasis. We are developing first-in-class anti-cancer treatments by disrupting the K-V IF cytoskeleton.

Our first topical product will target Actinic Keratosis (AK) and Squamous Cell Carcinoma (SCC).

- **Lead Innovator:** Christopher Bunick, M.D.
- **IP Status:** PRV application filed in 2018

AK/SCC Prevalence of ~40 M
Cost of treatment >$1 Billion USD/yr

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
Background: YKL-40 (CHI3L1) is a glycoprotein of the chitinase family and a key regulator of angiogenesis, metastasis, and inflammation.

Indications: YKL-40 is over-expressed in cancer (small cell lung, melanoma, glioma, ovarian, breast, leukemia), asthma, and other inflammatory diseases, with levels correlating with disease stage and outcome. Potential indications also include atherosclerosis and NASH.

Innovation: Treatment with humanized anti-YKL-40 antibodies dramatically reduces disease.

IP status: Extensive IP portfolio in this area, including humanized monoclonal anti-YKL40 lead molecules.

Innovator: Jack A. Elias, M.D., Geoff Chupp MD

Issued Patents: WO 2003009808 A3, US7214373, US8679503

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research (203) 785-6167, john.puziss@yale.edu
N6-mA levels are significantly increased in aggressive forms of cancer, making it a novel therapeutic target and a powerful diagnostic marker.

Dr. Xiao’s lab at Yale is developing chemical inhibitors against methyltransferases and readers of N6-mA and testing these inhibitors in biochemical assays and patient derived xenograft (PDX) mouse models.

Several lead compounds have been identified. Medicinal chemistry optimization and large scale screen is in progress.

Intellectual Property: Patent pending

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
Convection-enhanced Delivery of Drug-Loaded Nanoparticles to the Brain Tumors

- Biodegradable nanoparticles (NPs) have been optimized to penetrate through tumor tissue when delivered by convection-enhanced delivery (CED).
- Delivery of drug-loaded enhanced NPs by CED outperforms treatment with “standard” NPs or drug alone.
- Could also be used to deliver therapeutics to the brain for other indications besides oncology.

References: Zhou et al., 2012 Cancer; 2013 PNAS; Ediriwickremaet et al., 2014 Biomaterials; Gaudin et al., 2016 Biomaterials; Saucier-Sawyer et al., 2016 J Control Release.

Patents Applications: 20150118311; 20140371712

Lead Innovator: Mark Saltzman, Ph.D.

Kaplan-Meier survival curves for tumor-bearing rats: blue line, brain-penetrating paclitaxel NPs (median survival 46 d); red line, standard paclitaxel NPs (median survival 38 d); green line, free paclitaxel (median survival 30 d); yellow line, blank NPs (median survival 31 d); grey line, no treatment (median survival 27 d)
Antisense to E2F8 to Treat Lung and Other Cancers

- Lung cancer is the most common cause of cancer-related death globally and there is a need for novel therapeutic approaches for its treatment.
- The transcription factor, E2F8, was shown to be overexpressed in lung cancer cells and required for cancer cell proliferation and survival.
- Higher E2F8 mRNA tumor levels have been shown to correlate with a worse clinical prognosis.
- A morpholino-modified antisense oligonucleotide to E2F8 was shown to inhibit the growth of a lung cancer xenograft in a mouse model.
- This antisense compound represents a novel therapeutic approach to treating lung cancer and other tumors in which E2F8 is elevated.
- A provisional patent application has been filed.

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Glioblastoma (GBM) are aggressive and invasive brain tumors that generally lead to death within a year of diagnosis.

No cure exists for this form of cancer and current treatments only prolong life by a few months.

Lassa-VSV is a novel recombinant oncolytic virus (OV) that can cross the blood brain barrier (BBB) and selectively kill glioma in the brain without the adverse effects of neurotoxicity that is associated with other VSV-related OVs.

In vivo mouse studies revealed selective infection and killing of GBM cells in the mouse brain after intravenous or intracerebral virus administration with substantially prolonged cancer survival far beyond that of control tumor-bearing mice that received no virus.

Lead Innovator: Anthony van den Pol, PhD

Intratumoral injection of Lassa-VSV (green) selectively infects and kills GBM cells (red) in the injected right tumor, and then migrates to the left tumor

Intravenously delivered Lassa-VSV crosses the BBB and protects mice from an implanted glioma

Yale University Office of Cooperative Research
(203) 785-3846, Christopher.unsworth@yale.edu
Selenocysteine (Sec) Method
- Therapeutic Utility
 - ADC & Rx proteins with novel properties & compositions
 - Rapid Purification via Sec
 - Efficiencies of incorporation of Sec/U: 70-100%

Phosphoserine (Sep) Method
- Dehydroalanine
- Target for chemical modification of proteins to yield the natural protein modifications
- Amenable to “Click Chemistry” modification

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Background: The NF-κB family of transcription factors plays an essential role in inflammation and in many steps of cancer initiation and progression. The most important members of this family are the transcription factors RelA (p65) and RelB.

We discovered a family of highly related type III secretion effector protein of *Salmonella typhimurium*, PipA, GogA and GtgA, that are highly specific proteases directed to RelA and RelB.

We propose that these proteases could serve as highly specific inhibitors of the NF-κB pathway and therefore can be used to counter inflammation or to treat many forms of cancer.

IP status: PCT/US2016/062541.

Lead Innovator: Jorge Galan, Ph.D., D.V.M.

HEK293T cells were transfected with a plasmid encoding a NF-κB reporter construct along with 25 or 50 ng of a plasmid encoding PipA, GtgA or GogA. Eighteen hours after transfection, cells were treated with TNFα (10 ng/ml) or infected with the ΔpipA, ΔgogA, ΔgtgA S. Typhimurium at a MOI = 5 and the reporter activity was measured 8 hs after treatment. Data are shown relative to the activity of the reporter in uninfected control cells and represent the mean ± standard deviation of three independent measurements.
OCR 5120: Universal Cancer Vaccine candidate

Immunogenic Epitopes as Targets for Universal Cancer Vaccines

- Unlike other vaccine-based technologies, OCR 5120 is not cancer-type specific, but a “pan-vaccine” antigen opportunity.
- The human immune system can respond to OCR5120 and identify the specific immunogenic epitopes derived from the OCR5120 antigen (see figure) as a matter of surveillance rather than response.
- OCR5120 target:
 - is important in self-renewal and maintenance of pluripotency in embryonic stem cells
 - is not cancer-type specific
 - is a “pan-vaccine” antigen
- Applications:
 - universal target for a general cancer vaccine
 - OCR5120-specific cellular preventive therapy for preventing cancer-like sides effects arising from stem cell-based therapies

Published Patent Application

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu
Novel Small-Molecule Drug Candidate: GFB-204

- GFB-204 is a novel compound that binds PDGF and VEGF and prevents binding to their respective receptors, and subsequently suppresses downstream signaling pathways.
- GFB-204 is selective for PDGF and VEGF, and does not inhibit EGF, IGF-1 and FGF stimulation of Erk1/2, Akt, and STAT3.
- As shown in the figure, GFB-204 causes a marked decrease in tumor volume in a mouse xenograft model.
- Inhibition of VEGF and PDGF receptor binding with GFB-204 results in potent inhibition of angiogenesis and tumorigenesis.
- **Inventor:** Andrew Hamilton
- **IP status.** Issued and pending patents: US 7,482,483; 7,718,700; EP 1713510
- **References:** Sun *et al.*, 2005 Oncogene

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Upregulation of MMPs is associated with a wide range of diseases including cancers, inflammation and cardiovascular diseases.

Measurement of MMP expression and activation in vivo could enable physicians to accurately diagnose and treat MMP-associated diseases.

Currently there are no tracers available in the clinic for imaging MMP activity.

A new type of a MMP inhibitor (1) has been developed, which also serves as a versatile scaffold (3) for developing MMP-targeted imaging agents.

Additionally, a novel precursor was also designed as a parent building block for making different type of hydrophilic MMP imaging tracers.

These novel scaffolds display improved pharmacokinetics and water solubility as compared to previously reported MMP SEPCT probes (i.e.RP805)

Lead Innovator: Mehran Sadeghi, PhD

IP status: PCT/US2017/026610

99mTc-RYM1 imaging of carotid aneurysm

Ex-vivo photography (A) and autoradiography (B) of aortae and carotid arteries from apoE-/- mice with CaCl2-induced carotid aneurysm injected with 99mTc-RYM1 without (left) and with the pre-injection of an excess of MMP inhibitor, RYM (right).
Supramolecular nanoparticles (SNPs) that effectively enhance the oral bioavailability of cargo drugs.

Functional nano- or microstructures from five classes of MNPs and their synthetic analogs and derivatives are stable in strong acidic environment (as low as pH 1.0) and can effectively penetrate the gastrointestinal tract.

Small compound chemotherapeutic agents and peptide therapeutics encapsulated therein show a much greater plasma concentration and targeted tissue adsorption following oral administration and strong efficacy in treating tumors, diabetes, and stroke in animal models.

Intellectual Property: Patent Application Pending

Enhanced bioavailability and stability of orally delivered drugs. (A) Oral administrated drug paclitaxel (PTX)-SNPs reduced tumor volumes substantially compared to control group, free PTX, and empty SNPs. (B) Exposure to pH 1.0 did not change the release of PTX from SNPs.
• KDM5A/B histone demethylases are amplified and overexpression in multiple solid tumors, making these enzymes ideal targets for cancer therapy;

• KDM5B loss/inhibition induced robust antitumor immune response, leading to prolong survival of tumor bearing mice in multiple models (Figure below);

• Specific inhibitors of KDM5 inhibitors (IC_{50}s of ~20 nM) have been identified. 35 high-resolution crystal structures (1.22-2.29 Å) of KDM5A with various inhibitors are available to support further medicinal chemistry optimization.

Intellectual Property: Patent Application Pending

Figure: KDM5B loss (left panel) or KDM5 inhibitor (KDM5i) treatment (right panel) significantly prolonged survival of melanoma bearing mice.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
Neuroscience and Visual Science
The microRNA miR466l-3p stabilizes IL-17A mRNA thereby increasing IL-17A levels.

IL-17A plays a pathogenic role in multiple inflammatory diseases (e.g., MS, IBD, Psoriasis).

A nucleotide has been developed that selectively blocks this miR466l-3P site on the IL-17A mRNA, and reduces IL-17A levels.

In vivo proof of concept of this therapeutic approach has been demonstrated in two mouse models of MS.

A provisional patent application has been filed.

miR466l-3p/IL-17A Target-Site Blocker (TSB) in a progressive EAE mouse model of MS. (2D2 Transgenic)

Mice treated from Day 6 Q3D at 5mg/kg i.p. except for a 10mg/kg dose on Day 9.
Polar Anionic Polymers rescue AD by inhibiting Aβ/PrP

- Amyloid β-oligomers (Aβ) bind to neurons via Prion Protein (PrP), triggering neurotoxic cascade and Alzheimer’s disease
- Polar anionic polymers bind to PrP with high affinity, inhibiting Aβ binding
- Oral delivery of PSCMA (Polymer 3) inhibits the Aβ/PrP interaction and rescues Alzheimer’s Disease-induced learning and memory deficits in mice

Pending Patent: US 62/694710

Innovators:
Stephen M. Strittmatter, M.D., Ph.D.
Erik Christian Gunther, Ph.D.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Platform for Developing Mechanism-Based PTP Inhibitors

- A novel Selenosulfide platform for phosphatase inhibitors.
- A prodrug approach that uses the high glutathione levels to deliver the active moiety intracellularly.
- The prodrug portion enables optimization of pharmaceutical properties.
- Proof of concept shown with mPTPA from mycobacterium tuberculosis and the CNS enzyme STEP phosphatase.
- A provisional patent application has been filed.

Table 1
Selectivity profile of mPTPA inhibitor 2 against a panel of human PTPs and mPTPB. *a IC*₅₀ values were determined in the presence of a physiological intracellular concentration of GSH 1 mM).

<table>
<thead>
<tr>
<th>enzyme</th>
<th>mPTPA</th>
<th>mPT PB</th>
<th>STEP</th>
<th>LMW-PTP</th>
<th>PTP1 B</th>
<th>CD45</th>
<th>LAR</th>
<th>TC-PTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC<sub>50</sub> (µM)<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPTPA</td>
<td>0.53 ±</td>
<td>>100</td>
<td>6.2 ±</td>
<td>43 ±</td>
<td>50 ±</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>mPTPB</td>
<td>0.10</td>
<td>>100</td>
<td>2.9</td>
<td>11</td>
<td>20</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>selectivity</td>
<td>--</td>
<td>>100</td>
<td>12</td>
<td>81</td>
<td>94</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Background: Cellular prion protein PrP^C acts as a high affinity receptor for Aβ-oligomers and is required for Aβ-oligomer-induced synaptic dysfunction in vitro and in vivo. Signal transduction downstream of Aβo/PrP^C involves mGluR5, Fyn and Pyk2.

In an AD Tg mouse model an infusion of the anti-PrP^C mAb produces a significant behavioral rescue in the setting of advanced disease, even with a relatively short treatment regiment (Fig. 1).

Indications: Alzheimer’s Disease; prion-related diseases (CJD, etc).

IP status: Issued patent US 9217036; option to commercially-developed human mAbs.

Lead Innovator:
Stephen M. Strittmatter, M.D., Ph.D.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Novel small molecule compounds for treating dry AMD

Background: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly patients, affecting more than 8 million individuals in the US alone. Currently, there is no effective therapy for 90% of AMD patients with “dry” or atrophic form of AMD. The retinal pigment epithelial (RPE) cells are vital for proper functioning neurosensory retina. Age-related changes in RPE cells are a hallmark of early AMD and contribute to pathology and visual morbidity associated with advanced AMD.

Invention: Using a HTS assay, we identified a small molecule 424 as the lead compound with IC$_{50}$=\sim20nM. It is non-toxic in vitro and significantly improves RPE viability in the tert-butyl hydroperoxide (TBHP) challenge assay, which induces oxidative stress (Figure 1).

- Tolerability and pharmacokinetic studies for topical (eye drops) and intravitreal delivery of compound 424 are underway.
- We have identified additional, novel chemotypes that are under development.

IP status: PRV application filed.

Innovators: Mark Fields, Ph.D., Lucian Del Priore, M.D., Ph.D.

Figure 1. Treatment with compound 424 significantly enhances human RPE cell viability after challenge with TBHP as measured by luminescence. A. RPE control. B. Compound 424 is non-toxic. C. TBHP induces cell death. D. Compound 424 protects RPE cells from oxidative stress. E. Summary of all experiments

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
Small molecule drug candidate and delivery system for corneal dystrophy

Background: Fuchs’ endothelial corneal dystrophy (FECD) is a progressive, blinding disease characterized by corneal endothelial cell apoptosis. FECD is currently treated only by surgical procedures such as corneal transplant and require extended periods of recovery. Oxidative stress has been demonstrated to play a major role in the pathogenesis of the FECD.

Inventions:

(i) Using HTS, we have identified several hit molecules with EC$_{50}$ in the nM range. Our **lead compound** 424 protects corneal endothelial cells from oxidative stress-induced cell death in a dose-dependent manner (Figure A). Med chemistry of 424 is underway.

(ii) We are also developing a novel **non-invasive small molecule ocular drug delivery/formulation system** to optimize delivery and penetration of compound 424. Tolerability and pharmacokinetic studies for topical delivery of the lead compound and the formulation system are underway.

IP status: PRV application filed.

Innovators: Mark Fields, Ph.D.,
Lucian Del Priore, M.D., Ph.D.

Figure A. Treatment with the compound 424 (not formulated) significantly enhances corneal endothelial cell viability after challenge with TBHP (which induces oxidative stress), as measured by luminescence.
Novel endothelial-specific molecules (ESMs) actively cross BBB and carry other molecules with them

The Problem: Brain and retina are shielded to prevent entry of infectious agents and toxins and maintain ionic homeostasis. >98% of small molecules and macromolecules are prevented from crossing the BBB and BRB. Drugs that cross BBB are limited to small lipophilic molecules. Larger hydrophilic molecules do not cross BBB/BRB. We created a library of tens of small molecule ESMs with exquisite specificity and efficiency for entering blood endothelial cells and tested them *in vivo.*

Our solution: ESMs are inherently fluorescent and can be tracked *in vivo* (*Fig 1*)
- ESMs cross BBB through SLC membrane transporters, reach endothelial cytosol and nucleus, when administered topically (*Fig 2*) and I.V. (not shown)
- ESMs *can be conjugated* to molecules up to 1000 Da (testing of large molecules under way) without loss of BBB-crossing properties and endothelial specificity and *serve as molecular trojan hoses to transport drug across the BBB* (*Fig 3*).

Lead Innovator: Jaime Grutzendler, M.D.

IP Status: PRV application filed in 2018

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
mGluR5 Silent Allosteric Modulator For Treatment of Alzheimer’s Disease

- **Background:** mGluR5 has been identified as part of a cell-surface complex that binds to Ab oligomers, which leads to synaptic loss and neuronal death.

- A small molecule silent allosteric modulator (SAM) has been identified that blocks Ab binding, **but does not interfere with normal glutamate signaling**.

- Treatment of AD mice with SAM improves memory and learning (Fig.1), and ameliorates synaptic loss (Fig.2).

- **IP status:** Extensive patent portfolio covers novel composition of matter and is available for licensing.

- **Lead Innovator:** Stephen M. Strittmatter, M.D., Ph.D.

Fig. 1. SAM reverses learning and memory deficits in APP/PS1 transgenic mice after 4 weeks of treatment. Spatial learning in Morris-Water Maze.

Fig. 2. SAM recovers loss of synaptic markers in APP/PS1 mice after 5 weeks of treatment. **PSD95 area.**

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research (203) 785-6167, john.puziss@yale.edu
Fluorine-18 labeled radiopharmaceuticals for SV2A imaging and as biomarkers of synaptic density

- Many neurological and psychiatric diseases, such as Alzheimer’s and Epilepsy, are characterized by misfiring synapses. Currently, there is no way to visualize healthy or aberrant neuronal connections in the living human brain.
- SV2A radioligands combined with positron emission tomography (PET) can be used to noninvasively quantify synaptic density in the living human brain.
- Fluorine-18 labeled SV2A radioligands have a longer half-life (110 min) making them suitable for commercialization and clinical applications.
- This promising method enables routine brain monitoring in patients with neurological diseases, where synaptic loss or dynamic changes in density could provide clues to prognosis.

Reference: Finnema et al. (2016) Science

Lead Innovator: Zhengxin Cai, PhD

IP status: Provisional application pending 62/460,541

PET evaluation with SV2A radioligand reveals unilateral sclerosis in epilepsy patients.

(Left) The white arrows indicate loss of SV2A radioligand binding in the mesial temporal lobe. (Right) Asymmetry indices between left and right hemispheres for healthy control subjects and between ipsilateral and contralateral hemispheres for epilepsy patients. Data are individual subjects.

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Novel Small-Molecule Drug Candidate: GFB-204

- GFB-204 is a novel compound that binds PDGF and VEGF and prevents binding to their respective receptors, and subsequently suppresses downstream signaling pathways.
- GFB-204 is selective for PDGF and VEGF, and does not inhibit EGF, IGF-1 and FGF stimulation of Erk1/2, Akt, and STAT3.
- As shown in the figure, GFB-204 causes a marked decrease in tumor volume in a mouse xenograft model.

- Inhibition of VEGF and PDGF receptor binding with GFB-204 results in potent inhibition of angiogenesis and tumorigenesis.
- **Inventor:** Andrew Hamilton
- **IP status.** Issued and pending patents: US 7,482,483; 7,718,700; EP 1713510
- **References:** Sun et al., 2005 Oncogene
Treating Alzheimer’s Disease by blocking TGF-β signaling

- Blocking the transforming growth factor-β (TGF-β) pathway in peripheral macrophages can significantly clear up β-amyloid plaques in the brain.
- These results provide the basis for a novel therapeutic intervention for Alzheimer’s disease by blocking the TGF-β-Smad2/3 signaling pathway in peripheral macrophages.
- Blockade of TGF-β works peripherally without the need to permeate the blood-brain barrier to enter the brain.

Expression of a CD11c promoter–driven dominant-negative TGF-β receptor type II in an Alzheimer’s disease mouse model (Tg2576–CD11c-DNR) improved Alzheimer’s-like behavioral impairment such as hyperactivity.

Intellectual Property: U.S. Patent 9,095,126

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research (203) 785-3074, hong.peng@yale.edu
OCR5570: Novel Druggable Target to Treat Bipolar Disease

- 6 million adults in US have BP
 - severe mood swings
 - 1 in 5 commits suicide
- All available BP drugs: toxic, poor efficacy, or both
- Current trials lack novel compounds, mainly drug combinations
- OCR5570 target levels affected in bipolar
 - Target structures + hits known
 - Screenable/Structure-based drug design
 - Animal models available for in vivo validation

- Critical protein-protein Interactions Identified
- Amenable to split renilla luminescence assay

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Functional near infrared spectroscopy (fNIRS) as a diagnostic tool for Autism Spectrum Disorder (ASD) in high risk infants and toddlers

• Previous dual-brain studies during social interaction have demonstrated synchronization of brain activity of adult participants.

• Characterization of cross-brain synchronization between children and their mothers can be used to understand social communication in ASD using a novel, clinically usable, non-invasive brain imaging technology, functional near-infrared spectroscopy (fNIRS).

• It is hypothesized that cross-brain synchronization of regions associated with language, song, and vision occurs in typically developing infants or toddlers and their mothers during communication.

• In contrast, we predict that infants and toddlers at high risk for autism will show reduced or altered cross-brain synchronization with their mother’s brain activity during speech or songs.

• Although high-risk infants have similar brain patterns to children diagnosed with ASD, they do not show the characteristic ASD behavior. Therefore this may be a novel way to diagnose autism in high-risk infants much earlier than current methods.

• **Lead Innovator**: Joy Hirsch, PhD

• **IP status**: PCT/US15/58835 pending

Yale Contact: Christopher D. Unsworth, Ph.D.,
Yale University Office of Cooperative Research
(203) 785-3846, Christopher.unsworth@yale.edu
Neuroprobe sensor

- NeuroProbe is a brain implantable device for multimodal brain monitoring in the Neuro-ICU.
- Makes early detection of secondary brain injury post TBI possible, which, if detected early, may be reversible.
- The integration of sensors on a single probe co-locates data acquisition, a dramatic improvement for research, beyond patient benefit.
- Portable multimodal interface device NeuroLink stores and relays the digital data to standard clinical monitors or a portable monitor.
- Placement possible at bedside or at a military field facility.

Fig 1. Intracranial pressure (icP), intracranial EEG (icEEG), intracranial temperature (icT), brain tissue oxygen (PBTO2) and cerebral blood flow (CBF)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Number of Probes</th>
<th>Reliability</th>
<th>Ease of Use</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>NeuroProbe</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
Many neuropsychiatric conditions, including OCD, are characterized by regionally abnormal brain activity.

Only ~60% of patients respond to standard OCD interventions and these options affect the entire brain causing undesirable off-target effects.

Studies have revealed hyperactivity of a specific brain region, the OFC, in patients with OCD making it an attractive therapeutic target.

NIRS-driven neurofeedback therapy is optimized for such conditions: it is more affordable than fMRI, portable, non-invasive and targeted to control activity of affected neural areas.

In NIRS, the signal reflects the metabolic activity of a defined brain area and patients can use the visual readout of this activity to learn via trial-and-error to control its activity.

This therapy can lead to altered functional connectivity within the targeted circuitry that persists even in the absence of ongoing efforts at control.

Lead Innovator: Chris Pittenger, MD/PhD

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research
(203) 785-3846, Christopher.unsworth@yale.edu
Abnormal phosphorylation of tau is a classical hallmark of Alzheimer’s and some other neurodegenerative diseases.

Fine detail analysis of the cellular location of various signaling components in the primate prefrontal cortex (PFC) identified a mechanism whereby phosphorylated tau accumulates with aging.

Based on this hypothesis, chronic treatment (daily for 6 months) with low doses of a known, now generic, therapeutic was shown to enhance cognition and reduce the level of phosphorylated tau in the primate PFC (see figure).

A patent application has been filed on this use of the low dose of this generic compound.
NEUROCYTE THERAPEUTICS
PKC INHIBITOR FOR SAFE TREATMENT OF NEURO-PSYCH DISORDERS

Restores proper Protein Kinase C (PKC) cell-signaling
 ↓ Chronic Stress / Neuroinflammation +
 ↑ Executive Function / Neuroplasticity
Regulation of thoughts, behaviors, and emotions

- Potent CNS small molecule chelerythrine (chel) prodrug
- POC for Bipolar Mania treatment
 ✓ Effective, safe, and non-addictive
 ✓ Validated target + novel mechanism + commercial need
 ✓ QD, PO Rx, use alone or with other treatments
 ✓ Meets Lipinski’s “Rule of 5” for “druglikeness”
- 2 Granted COM patents + 1 Use + FTO = Solid IP

As effective as Lithium treatment

Restores dendritic spine plasticity

Neurocyte Therapeutics has licensed this technology from Yale University and is seeking investment/development partners.
For more information contact: Christopher.Unsworth@yale.edu
Therapeutics:
Cardiac, Pulmonary, Hepatic, Metabolic and Fibrotic Disease
Atherosclerosis is initiated by sub-endothelial accumulation of LDL.

Endothelial cells can take up LDL independent of the LDL Receptor (LDLR).

A GW siRNA library screen identified ALK-1 as a mediator of LDLR-independent LDL uptake.

Loss of ALK-1 leads to reduced endothelial LDL uptake in vivo.

ALK-1 antibodies or decoy proteins are under evaluation as potential therapeutics for atherosclerosis.

A provisional patent application has been filed.

http://www.nature.com/articles/ncomms13516
OCR 7222: Therapeutic for Acute Lung Injury

Low-dose of ChemoRx Prevents/Treats Acute Lung Injury

- About the indications/in vivo models
 - ALI/ARDS LPS Injury Model
 - Acid-induced Lung Injury
 - Clinical utility: Emergency Department, ICU’s

- About the target/specificity
 - Well-characterized enzyme & pathway
 - Target validated by KO
 - OCR7222 acts on ALI in a target-specific mechanism

- Mechanism
 - Biology well-characterized
 - Surprising result: cell-specific biological response is favorable, unlike tissue-wide induction of pathway.

- About the agent
 - Oral small molecule
 - Approved for oncology indications via oral delivery
 - OCR7222 composition is generic or comes off patent 2021-23

- Novelty
 - New indication
 - Ultra-low effective dose 1/40th of chemotherapeutic dose
 - Novel route of delivery: inhalation

- OCR7222 IP Status:
 - Unpublished
 - Provisional patent filed
 - Both available under CDA

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Recombinant Protein for Treatment of Coronary Artery Disease (CAD) and Metabolic Syndrome (MetS)

- Genetic analysis of a kindred displaying marked early onset CAD, type 2 diabetes, hypertension and hypertriglyceridemia identified mutations in a specific gene.
- The protein encoded by this gene is ubiquitously expressed and found in the plasma, the mutations result in loss of its enzymatic function.
- In *in vitro* studies the wild-type enzyme increased Insulin release in the presence of high glucose (top figure) while *in vivo* treatment of mice markedly dropped blood glucose levels (lower figure).
- This recombinant protein is a promising candidate for treatment of CAD, MetS and related disorders.
- **IP status**: provisional patent application filed.
Non-Alcoholic Steatohepatitis (NASH) is a form of sterile inflammation that is driven by obesity, metabolic syndrome and type 2 diabetes. It can progress to fibrosis, cirrhosis, and liver cancer. There are no approved therapies. By 2020, NASH will be the leading cause for liver transplants.

About OCR 7314:
- Excellent Phase 1 safety and tolerability data; Phase 2 safety data.
- Strong \textit{in vitro} and \textit{in vivo} efficacy in the HFD mouse models of NASH.
- Unique mechanism of action: targets inflammation and oxidative stress pathways that lead to liver fibrosis, while majority of current NASH drug candidates (18 out of 27 active NASH programs) target metabolic component of the disease.
- Biopharma-developed drug, in-licensed by Yale for clinical development for new indications, including NASH and liver fibrosis.

1. Mice with total body and Kupffer cell-specific loss of TLR9 are protected from NASH caused by high fat diet (HFD).

2. OCR7314 reverses liver injury in the HFD model of NASH.

IP status: 7 issued patents, extending to 2030; Clinical data package and Right of Reference to active IND. **Lead Inventor:** Wajahat Mehal, M.D., D. Phil.
Endothelium-specific delivery of let-7 miR for treating Atherosclerosis

- Atherosclerosis is responsible for the vast majority of cardiovascular disease. Currently available therapy (statins) slow down, but do not reduce the disease.
- Suppression of TGF, FGF and let-7 miRNA signaling in the endothelium can be used to reduce the size of atherosclerotic plaque and decrease overall atherosclerosis burden.
- A genetic proof of this concept has been obtained in mice using endothelial-specific TGFR1/R2 knockout.
- Additional supporting data available from human samples
- **Indications:** atherosclerosis, CAD/MI/angina, stroke, peripheral vascular disease
- **Lead Innovator:** Michael Simons, M.D.
- **References:** Unpublished work
- **IP status:** PCT patent application filed

Endothelium-specific delivery of let-7 miR reduces atherosclerosis: ~ 60% reduction in total plaque burden in Apoe-/-

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
MicroRNAs 424 and 503 for PAH treatment

- Pulmonary arterial hypertension (PAH) has limited treatment options with 40-50% mortality within 3 years of diagnosis.
- Identification of novel therapeutic targets remains a critical unmet medical need for this disease.
- The global market for PAH is expected to grow to over $3.5 billion by 2016\(^1\).
- MicroRNAs (miRs) 424 and 503 are effective in human and animal models of PAH (see figure).
- miRs 424 and 503 may be the basis for effective therapeutics for PAH.
- Reference: Kim et al., 2013 Nature Medicine
- Patent: US20140155459 A1
- Lead Innovator: Hyung Chun, MD, FAHA

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu

Polymeric Bile Acid Formulations for Targeted Delivery

- A new class of polymer biomaterials (PUDCA) that are selectively taken up and retained in the pancreatic, hepatic and colon microenvironment.
- Formulated as orally administered, safe and biodegradable nanoparticles.
- Unique properties: encapsulates drugs and/or agents, pH-responsive, enables sustained release.
- **Indications:** targeted delivery of drugs and tracking/imaging agents to sites of pancreatic, hepatic and colonic inflammation. For therapy and diagnostic uses
- **Innovator:** Tarek Fahmy, Ph.D.
- **IP status:** PCT/US Application filed 62/214,648
- **Publications:** Unpublished work

FIG. Histology images of pancreatic sections from mice that were orally treated with PBS or PUDCA nanoparticles containing iron oxide (SPIO-PUDCA). Iron Oxide is assayed using the Prussian Blue stain which appears distinct in the pancreas.
HDAC Inhibitors for Treatment of PAH

- Pulmonary arterial hypertension (PAH) has limited treatment options with 40-50% mortality within 3 years of diagnosis. It remains a critical unmet medical need. The global market for PAH is expected to grow to over $3.5 billion by 2016.
- Augmentation of MEF2 activity holds a potential therapeutic value in PAH.
- HDAC IIa inhibition enhances MEF2 activity, shows efficacy in rodent models of PAH.
- Selective HDAC inhibition should avoid the potential adverse effects of broad spectrum HDAC inhibition in PAH.

Filed and Issued Patents: 9340787; 20140155459

Innovator: Hyung Chun, M.D.

Right ventricular systolic pressure (RVSP) measurement in rats received either vehicle (DMSO) or MC1568, an HDAC class IIa specific inhibitor. MC16568 rescues experimental mouse models of pulmonary hypertension (MCT, SUGEN).
Novel Therapeutic Targets for Pulmonary Fibrosis and Scleroderma

- **Background:** Fibrotic lung diseases represents a major unmet medical need, as effective treatment options are currently not available.

- Mice that overexpress TGF-β have identified several novel targets (including β1 integrin) for therapeutic interventions in fibrotic lung diseases.

- The blockade of β1 integrin significantly inhibits fibrosis (collagen formation).

- Semaphorin 7A inhibition (Figure B) is also effective as a therapeutic treatment for fibrotic disease.

- **Patents:** Issued patents WO2013052631 A1 and US20140271639

- **Lead Innovator:** Erica Herzog, M.D., Ph.D.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Repositioning for Hepatoprotection

Hepatoprotectant (APAP and other agents)

- OCR 4554 is an approved drug used by countless patients worldwide (WW)
- Acetaminophen (APAP) sales
 - Dozens of companies have OTC sales
 - Tylenol’s 20.3% market share and $850M WW/yr
- Large percentage of population have vulnerable livers and would benefit from safer APAP (Figure 1).
- APAP overdose among most common
 - FDA has long wrestled with safety vs. efficacy for APAP
 - US: 56,000 ER visits/yr
 - 100 unintentional deaths/yr
 - 51% of all US liver poisonings in 2003
 - Used in suicide attempts
- OCR 4554 in combination with APAP reduces mortality in vivo (Figure 2).
- Patent

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
Thyroid hormone as a novel therapeutic agent in fibrotic lung diseases

- Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disorder. The median survival of patients with IPF is 3.5-4 years from initial diagnosis, irrespective of treatment.

- **Innovation:**
 - Inhaled or aerosolized delivery of thyroid hormone to the lung – preliminary results demonstrate thyroid hormone resolves pulmonary fibrosis in animal models and increases survival.

IP Status: PCT/US 15/317,276

Lead Innovator: Naftali Kaminski, M.D.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Inhaled Sobetirome as a novel therapeutic agent in ARDS

- Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is a major cause of respiratory failure.
- 200,000 adults and 15,000 children in US are affected with ARDS, with a mortality rate of ~40%.
- Treatment options are limited to mechanical ventilation. No FDA approved drugs on the market yet.
- Thyroid hormone (TH) and the thyroid receptor agonist Sobetriome (GC-1) attenuate hyperoxia induced ALI in WT mice.

IP Status: U.S. provisional patent application 62/641,643

Innovators:
- Naftali Kaminski, MD
- Patty Lee, MD

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Sobetirome as a novel therapeutic agent in fibrotic lung diseases

- Idiopathic pulmonary fibrosis (IPF) is a lethal progressive chronic lung disease of unknown origin, with median survival of 3 years. 6M worldwide and 190,000 in USA are affected with IPF.
- Market expected to reach $3.2 billion by 2025.
- 2 FDA approved drugs show 40% reduction in disease progression, but no impact on QOL or survival. Side effects are significant (gastrointestinal, liver and photosensitivity), leading to poor patient compliance.
- Sobetirome (GC-1) is well characterized thyromimetic drug. *in vivo* animal proof of concept in IPF shows significant resolution of fibrosis

Yu et al, *Nature Medicine* 2018

- **IP Status**: PCT/US 15/317,276
- **Innovator**: Naftali Kaminski, M.D.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research (203) 785-6167, john.puziss@yale.edu
Fundamental Insulin/GLUT4 Biology:

Insulin stimulates the proteolytic cleavage of TUG to translocate GLUT4 transporters and to promote glucose uptake (A). **TUG-C**, the C-terminal cleavage product of TUG, translocates into the nucleus (B), and modulates metabolic activity via interaction with PPARg and PGC-1a.

Validity of Clinical Hypothesis:

Human: SNP in PPARg modulates TUG-C binding/PPARg activity

In vivo Validation:

– **Mouse**: TUG-C regulates energy expenditure. GOF = “TUG-C Preservation” increased energy expenditure (C).

– **Mouse**: In vivo validation of OCR7575 as a target (D).

Innovator: Jonathan Bogan

Yale Contact: David A. Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu
Tissue-specific KO’s of “Phs1” Phosphatase Prevents NASH

Validity of Therapeutic Hypothesis:

- **Mouse**: global KO protects against high-fat diet (“HFD”)-induced NASH
- **Mouse**: liver-specific KO protects against HFD-induced NASH
- **Mouse**: liver-specific KO on CDAA diet - Phs1 required to develop NASH (a)
- **Mouse**: liver-specific KO protects against HFD-induced NASH (b), elevated liver triglycerides (c), reduces PPARγ and SERP1c mRNAs (d)
- **Mouse**: genetically obese (ob/ob) Phs1 KO are protected against NASH (e)

Drugability of Class: Allosteric site identified and successfully targeted for the structurally-related Phs-5 Phosphatase.

Commercial: “Phs5” program for multiple fibrosis indications partnered with a top Pharma.

Faculty Resources:
- Validated primary and secondary screens established
- Library of Phs family allosteric scaffolds available for medicinal chemistry
- Cell lines, mouse models, assays, commercial experience

IP/Assets: diverse expertise, models, co-crystal structures, published biology and pathway understanding, proven team

Yale Contact: David A. Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu
OCR7593: Oral 100nM Small Molecule for COPD

In Vivo Agonist Intervention in Established Disease

Validity of Therapeutic Hypothesis:

Human: Smokers have decreased circulating MIF (A)

Patient Selection: Genotypic (MIF CATT allele) & serum MIF; low MIF expression is more common in COPD patients

Mouse: MIF-deficiency results in spontaneous COPD (B)

Demonstrated Efficacy:

Mouse: Over-expression of MIF prevents spontaneous COPD

Mouse: Established smoke-induced COPD is treated by daily oral administration of MIF-20 (C); 3 months

Chemistry: Multiple MIF agonist compositions of matter; enhanced MIF to CD74 binding

Yale Contact: David A. Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu

Innovators: Lee, Bucala

Issued and pending patents
Therapeutics: Inflammatory and Autoimmune disorders, Immunomodulation
The microRNA miR466l-3p stabilizes IL-17A mRNA thereby increasing IL-17A levels.

IL-17A plays a pathogenic role in multiple inflammatory diseases (e.g., MS, IBD, Psoriasis).

A nucleotide has been developed that selectively blocks this miR466l-3P site on the IL-17A mRNA, and reduces IL-17A levels.

In vivo proof of concept of this therapeutic approach has been demonstrated in two mouse models of MS.

A provisional patent application has been filed.

miR466l-3p/IL-17A Target-Site Blocker (TSB) in a progressive EAE mouse model of MS. (2D2 Transgenic)

Mice treated from Day 6 Q3D at 5mg/kg i.p. except for a 10mg/kg dose on Day 9.
Dr. Bothwell and his colleagues at Yale have discovered a novel role of Dkk-1 in type 2 immune responses.

Upon environmental challenges, Dkk-1 is secreted from and circulated by platelets to facilitate leukocyte migration and polarize immune responses by inducing Th2 cell polarization.

Functional inhibition of Dkk-1 protects mice from chronic type 2 inflammation in house dust mite (HDM)-induced asthma and Leishmania major cutaneous infection.

Dkk-1 is an attractive target for controlling type 2 immune responses.

Intellectual property – A patent application has been filed

Inflammasome-mediated inflammatory disease treatment with β-hydroxybutyrate and similar compounds

- NLRP3 inflammasome activation is implicated in a number of diseases such as gout, atherosclerosis, type-2 diabetes, Alzheimer's disease, multiple sclerosis, Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory Syndrome (FCAS).
- The ketone body β-hydroxybutyrate (BHB) as well as γ-hydroxybutyric acid (GHB) can inhibit NLRP3 inflammasome activation. BHB delivery in vivo reduced NLRP3 inflammasome-mediated Interleukin (IL)-1β secretion, reversing phenotypes in animal models with gout, MWS, FCAS, and peritonitis.
- **Intellectual property** – A provisional patent application has been filed

Reduction of neurotrophil infiltration as well as NLPR3 inflammasome and related cytokines in the ketogenic diet fed mouse model.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
MIF: Macrophage migration Inhibitory Factor is a pro-inflammatory cytokine

Clinically Validated Target: anti-MIF antibodies & MIF KO’s have in vivo activity in multiple cancer and inflammatory indications
- cancer (e.g., prostate, colon, lung, melanoma)
- rheumatoid arthritis, sepsis, atherosclerosis, asthma, and ARDS

Two Diverse Highly Potent Series by Design (a):
- SAR Yield: ~400 compounds, low-nM MIF-binding
- ~1000x more potent than others’ antagonists

Commercial: both series are drug-like with economical synthesis routes

HitProfiling and CYP450s: clean/excellent metabolic stability

Biologically Active (b): PC3 prostate cancer cells

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
VEGF-C potentiates immunotherapy to eradicate GBM

- Unlike VEGF-A, VEGF-C promotes lymphangiogenesis
- VEGFC-AAV pre-treatment in mice results in complete rejection of brain tumors.
- VEGFC-mRNA treatment after tumor establishment potentiates anti-PD1 therapy in mice, results in 100% survival
- Lower tumor burden correlates with higher survival in mice

Pending Patents: 62/768,390

Innovators: Akiko Iwasaki, Ph.D.
Recombinant Biologic to Prevent & Treat AKI

- **MIF-2** (aka D-DT) has utility for the prevention and repair of ischemia/reperfusion AKI.
- **Validity of Human Clinical Hypothesis:** Genetically characterized subset of cardiac surgery patients suffer AKI.
- **Efficacy/Safety**
 - **Mouse:** MIF-2 treatment results in AKI repair (A/B).
 - **Mouse:** MIF-2 stimulates multiple cell repair mechanisms. (C).
- **Pre-clinical studies**
 - **Mouse:** High therapeutic dose without toxic side effects.
 - **Pig:** Initial PK/PD studies completed.
- **Manufacturing** This 37.5 kD MIF-2 protein homotrimer (D) has been scaled up for porcine studies (CRO; E. coli).
- **Innovators:** Bucala, Young, Moeckel
- **IP:** Issued & Pending Patents

Yale Contact: David A. Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu
Background

- Autosomal Dominant Polycystic Kidney Disease (ADPKD) affects >600,000 in US population; 12.5 M worldwide
- ~4% of prevalent End-Stage Renal Disease (ESRD)
- ADPKD has **orphan condition designation** (2012) with estimated prevalence in US 1:2000
- One **approved therapy**: Tolvaptan (Jinarc) – approved April, 2018
- Targets low level proliferation and secretion in cysts originating from collecting duct; unknown long term efficacy and significant side-effects including liver toxicity (Hy’s law)

Innovation

- Identified the Ireα-Xbp1 pathway as a modulator of cyst growth
- Inhibition of this pathway at the genetic level slows down disease progression in orthologous animal models through specific apoptosis of mutant cells
- Generated a pre-clinical efficacy package around a novel use for an Ireα inhibitor previously tested in human trials

Yale Contact: Lolahon Kadiri, M.D., Ph.D., Yale University Office of Cooperative Research (203) 785-6038, Lolahon.kadiri@yale.edu
Vaccines & Infectious Disease
Group II Introns are found in fungi but not in mammals.

A high-throughput screen for inhibitors of identified 16 reproducible hits of Group II intron splicing

Most potent inhibitor has MIC of 2 µg/ml vs Candida parapsilosis (comparable with Amphotericin B)

non toxic in mammalian cell culture model

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
A novel Selenosulfide platform for phosphatase inhibitors.

A prodrug approach that uses the high glutathione levels to deliver the active moiety intracellularly.

The prodrug portion enables optimization of pharmaceutical properties.

Proof of concept shown with mPTPA from mycobacterium tuberculosis and the CNS enzyme STEP phosphatase.

A provisional patent application has been filed.

Platform for Developing Mechanism-Based PTP Inhibitors

<table>
<thead>
<tr>
<th>enzyme</th>
<th>mPTPA</th>
<th>mPT PB</th>
<th>STEP</th>
<th>LMW-PTP</th>
<th>PTP1 B</th>
<th>CD45</th>
<th>LAR</th>
<th>TC-PTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀ (µM)²</td>
<td>0.53 ±</td>
<td>>100</td>
<td>6.2 ±</td>
<td>43 ±</td>
<td>50 ±</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>selectivity</td>
<td>--</td>
<td>>100</td>
<td>12</td>
<td>81</td>
<td>94</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

Table 1. Selectivity profile of mPTPA inhibitor 2 against a panel of human PTPs and mPTPB. ² IC₅₀ values were determined in the presence of a physiological intracellular concentration of GSH 1 mM).

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
OCR6245: In vivo Long-term CR NNRTI

Long-acting CR-NNRTIs to Treat HIV

- Marked synergy with current FDA-approved NRTIs (e.g. tenofovir (TDF), INSTIs, and pharma clinical compounds (A)
 - Excellent candidate for combination therapy regimens
 - Pre-Exposure Prophylaxis (PrEP)
- Highly soluble with 2-21 nM potency vs. drug-resistant strains, including K101P (e.g., rilpivirine ineffective against K101P) in MT-2 T-cell/HIV-1 assay
- Excellent ADME-Tox and physiological properties (B)
 - No off targets including HERG and CYP3A
 - Excellent in vivo oral bioavailability in mice
- Efficacy in humanized mouse AIDS model (C)
 - CD4+ ; viral load undetectable
 - Single dose, long-acting (4 week) sustained release nanoparticle formulation
- Issued US Patent 9,382,245 and related pending IP & Publications

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Novel cell wall synthesis inhibitors with appended siderophores have:

- Improved penetration into and growth inhibition of Gram-negative bacteria
- Decreased susceptibility beta-lactamases; avoiding a major cause of resistance
- Expanded spectrum of inhibition
- Concise modular synthesis
- Do not contain a beta-lactam ring, decreasing likelihood of allergic response
- **Superior potency vs clinical isolates when compared to ceftazidime, imipenem, etc.**

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
OCR6913: Whole cell vaccine/adjuvant platform

- Effective vaccines against many bacteria require T cell immunity, but few vaccines elicit such responses
- OCR6913 is a chemical technique for attaching a T cell-stimulating adjuvant (CPX2) directly to bacteria
- This adjuvant potently activates T cell-promoting signals through TLR7
- Demonstrated protective effect of the vaccine in vivo in S. aureus bacteremia model
- This chemistry allows synthesis of whole cell vaccines against any culturable bacteria or fungus

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu

Vaccine-mediated protection against S. aureus bacteremia
Total Synthesis and Synthetic Route for Novel Antibiotics

- **About the Pleuromutilins**
 - Bacterial protein synthesis inhibitor
 - Pleuromutilins approved/in the clinic
 - Approved (retapalmulin; Altabax®) for topical use (impetigo)
 - Phase 3: lefamulin (oral) various bacterial indications

- **Current production Pleuromutilins**
 - >3000 semisynthetic derivatives prepared modulated at C14
 - Little other exploration due to synthetic difficulties

- **Future Production/Novel Pleuromutilins**
 - Total synthesis at high efficiency
 - Commercially viable routes; high overall yield, short convergent synthesis
 - Ability to modulate ring size, introduce atomic substitutions, conduct deep SAR
 - Complete stereocontrol
 - Total synthesis facilitates novel chemistry

- **OCR7106 IP Status:**
 - Publications (Science, etc.)
 - Multiple patents filed (available under CDA)

New Synthesis

- Ten steps to entire skeleton

Prior syntheses:
- Gibbons, 1982
 - 31 linear steps racemic
- Boeckmann, 1989
 - 27 linear steps racemic
- Procter, 2013
 - 34 linear steps enantioselective

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Valnoctamide (VCD) inhibits Cytomegalovirus (CMV) infection

- CMV is the most common infectious cause of congenital birth defects in fetuses and can generate debilitating disease in immunocompromised patients.
- Current anti-CMV drugs are only partially effective, teratogenic and not recommended for fetal exposure.
- VCD is already FDA approved for the treatment of epilepsy and mood disorders.
- In in vitro studies, VCD effectively inhibited human and murine CMV.
- In a mouse model of perinatal infection, VCD safely attenuated murine CMV and improved both survival and development.
- VCD appears to act by a novel mechanism arising from inhibition of CMV attachment to the cell.

Reference: Ornaghi et al. (2016) Virology

Lead Innovator: Anthony van den Pol, PhD

IP status: Application filed PCT/US2017/030966

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
CD4 T-cells cells provide antibody access to immunoprivileged tissues

- In a mouse model of genital herpes infection, circulating CD4 memory T cells targeted antibody delivery to the neuronal sites of infection through secretion of interferon-gamma.

- Antibody therapy or vaccine against neurotropic viruses would benefit from generating robust circulating CD4 T cell memory responses first.

- Any biologics that require access of antibody or recombinant protein to immuno-privileged tissues would require prior activation of the tissue with IFN-g, TNF, or other cytokines that increases vascular permeability (for example, antibody-based treatment of brain cancers).

- **IP status**: US patent application pending

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research (203) 785-6167, john.puziss@yale.edu
Leptospira is a major veterinary pathogen and can cause a life-threatening disease in humans.

Current vaccines provide limited protective value.

Yale researchers have generated a live, attenuated strain of **Leptospira** that provides protective immunity.

Vaccination with this strain protects against a lethal challenge with various **Leptospira** species.

OCR6320 is a safe and efficacious novel vaccine candidate for the treatment of **Leptospira** infections.

Partnered for vet use; Human use still available.

Patent Application:
PCT/US15/19865

Lead Innovator:
Albert Ko, M.D.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Salmonella typhi causes typhoid fever, infecting tens of millions and killing hundreds of thousands of people every year.

The pathology is mediated by Typhoid toxin.

Current vaccines are only about 70-75% effective overall.

Need for more effective vaccines to prevent the contraction and spread of this disease.

An inactivated version of the toxin can serve as the basis for the development of novel second-generation vaccines to treat typhoid fever.

In in vivo murine studies, OCR 6185 conferred full protection against typhoid fever after inoculation with Typhoid toxin, as shown in figure.

Reference: Song et al. (2013) Nature

Patent Applications:
PCT/JP2001/000377; WO2002057760A1

Lead Innovator: Jorge Galan, PhD, DV

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Malaria is a worldwide infectious disease, causing over 1M deaths annually. RTS,S (Mosquirix™), the world’s only licensed malaria vaccine targets the circumsporozoite protein (CSP) and is only 27-46% effective.

A novel vaccine approach targets mosquito saliva components. Mosquito saliva is injected into patients along with malaria parasite.

Immunizing mice with antibodies against SG1L3, the lead mosquito salivary protein, showed substantial reduction of Plasmodium liver burden and parasitemia, when challenged with infected mosquito.

Intellectual property – A provisional patent application has been filed

Effects of immunizing mice with SG1L3 antibodies (A) Plasmodium liver burden in mice with no treatment, a known Plasmodium sporozoite transmission inhibitor (3D11 mAb against P. berghei CSP), an SG1L3 antibody, and an SG1L3 antibody and 3D11 mAb combination; (B) effect of SG1L3 antibodies on parasitemia in mice.

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
OCR 6190/4921: Novel HIV Drugs

- OCR 6190 is an optimized non-nucleoside reverse transcriptase inhibitors (NNRTI) with 100-fold greater solubility than currently FDA-approved drugs.
- OCR 4921 is a proof-of-concept bifunctional chimeric NRTI/NNRTI, as shown below, targeting HIV-1 viral replication.
- OCR 6190 & OCR 4921 have remarkable anti-HIV activity profiles with high potency and anti-viral activity.

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Development of a Novel HIV Bi-functional Therapeutic

- Specifically both HIV (or HIV-infected CD4 T cells) and endogenous, well characterized, antibodies (anti-DNP).
- Blocks HIV entry into cells as well as recruits antibodies.
- Results in destruction of HIV and/or HIV-infected cells.
- Provides advantages over protein-based therapeutics, such as large-scale production capabilities and low cost.
- ARM-H-3 is a soluble drug-like compound derivative of a known HIV antagonist.

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Catechol Diether Analogues as Anti-HIV Agents

- HIV reverse transcriptase (RT) remains a key molecular target and a cornerstone for HIV therapy.
- Yale researchers have identified catechol diether derivatives as novel, potent anti-HIV agents.
- These compounds are new non-nucleoside RT inhibitors (NNRTIs) that address continuing issues:
 - concerning the possible emergence of new viral strains
 - improved dosing
 - long-term tolerability
 - safety
- OCR5753 is the most potent anti-HIV agent with activity towards wild-type HIV-1; it inhibited replication of HIV-1 in infected human T-cells with an EC₅₀ of 55 picomolar.
- OCR5753 is 10 times more potent than any NNRTI reported to date, including the newest FDA-approved drug, rilpivirine.
- Development of the catechol diethers can be expected to yield compounds with high therapeutic potential with low toxicity leading to a very high therapeutic index.

Patent Application & Reference

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Treatment of HIV infection by inhibiting Toll-like receptor 7 signaling

- Existing anti-viral drugs focus on suppressing viral activity rather than awakening the host’s immune system.
- Activation of the Toll-like receptor 7 (TLR7) on CD4+ T cells results in down-regulation of immune response known as T-cell anergy.
- Inhibitors of TLR7 reverse T-cell anergy caused by HIV infection, as well as reduce HIV activity in both in vitro and ex vivo systems made of cells from HIV patients.
- *In vivo* study using a humanized mouse model confirms the efficacy of TLR7 blockade in treating HIV infection.
- This mechanism may open a new avenue in the fight against HIV.

In vivo proof of concept using a humanized mouse model. Viral load measured in mice infected with HIV-1 in the presence (right) or absence (left) of the TLR7 inhibitor IRS661 after 7 days of infection.

Lead Innovator: David Hafler, M.D.

Patents: A PCT has been filed.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
• *P. aeruginosa* causes infections that are notoriously difficult to manage due to low permeability of the outer membrane and antibiotic multi-drug efflux (Mex) system.

• OMKO1 is a phage that utilizes OprM/Mex as a receptor-binding site.

• Bacteriophage-induced selective pressure can reverse antibiotic resistance in multi-drug resistant *P. aeruginosa*.

• This phage has been used successfully to treat infections in 2 patients via compassionate use exemption.

• **Reference:** Chan *et al.* (2016) Sci Rep

• **Lead Innovator:** Paul Turner, Ph.D.
Tick Antifreeze Glycoprotein to Treat Antibiotic-Resistant Bacterial Infection

- Bacterial biofilm formation on indwelling devices is one of the mechanisms that cause antibiotic drug-resistance and bears annual healthcare burden $1 bn in the US.
- As bacteria dispersed from a biofilm usually rapidly become susceptible to antibiotics, drugs against biofilm formation provide an alternative opportunity to combat infectious diseases.
- A tick antifreeze glycoprotein IAFGP, and a derived synthetic peptide P1 function as an anti-virulence agent against diverse bacterial species by disrupting formation of biofilm.
- IAFGP and P1 can be used as potent anti-microbial agent, alone or in combination with other antibiotics such as Ciprofloxacin and Daptomycin.

- **Intellectual property** – PCT patent application has been filed (Publication WO 2015/095349)
- **Reference:** Heisig, Martin et al. (2014) Cell Report

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
The group of Dr. Kriegel at Yale has developed treatment methods to suppress a gram-positive gut commensal species in autoimmune-prone animal models.

Such protection is achieved against lethal autoimmune clotting leading to heart attacks, lung clots and strokes mirroring antiphospholipid syndrome, liver inflammation as seen in autoimmune hepatitis, and kidney damage due to lupus nephritis in human.

It is shown that commensal species present in human liver biopsies of autoimmune patients.

Intellectual Property: Patent Pending

Figure 1. Schematic illustration of the mechanism of action of a gut pathobiont on autoimmunity, and how the antibiotic vancomycin or a vaccine against the pathobiont protect from autoimmune diseases by preventing translocation of the autoimmune-promoting pathobiont.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
A novel, effective anti-bacterial peptide-morpholino oligomer

- Novel composition combining novel cell penetrating peptide (CPP) with morpholino oligomer

- The conjugate transports morpholino oligomer sequence into bacteria with 10-100 fold more efficiency than previous known peptides

- The conjugate has a broad range of potency against pathogenic bacteria

- **Patent:** U.S. patent application claims allowed

Table 1: Loss of viability of bacterial phenotype (containing drug resistant genes) when mixed with CPP-PMO conjugate
Dr. Andrew Goodman’s research shows that the gut microbes were responsible for producing 20-80% of the circulating toxic metabolites derived from 3 drugs.

Combining gut commensal genetics with gnotobiotics, they measured brivudine drug metabolism across tissues in mice that vary in a single microbiome-encoded enzyme.

Built a pharmacokinetic model that quantitatively predicts microbiome contributions to systemic drug and metabolite exposure, as a function of bioavailability, host and microbial drug-metabolizing activity, drug and metabolite absorption, and intestinal transit kinetics.

Developed a quick and accurate diagnostic test to distinguish viral and bacterial respiratory infections from patients’ nasopharyngeal swabs.

This method detects hosts’ responses to infections instead of testing each specific virus.

This is a non-blood based point of care diagnostic test to be used at any medical provider’s office.

Patent Application Pending

Figure 1: A. Test performance of mRNA biomarker signature. B. Possible rule in/rule out test for viral respiratory infection based on one biomarker protein level, using data from 219 nasopharyngeal swabs.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
Stem Cells, Cellular Therapy, Regeneration & Wound-healing
Implantation of biomaterials and devices into soft tissues leads to the development of the foreign body response (FBR), which can interfere with implant function and eventually lead to failure – currently there are no therapeutic options.

Yale researchers have identified that the acute inflammatory response to biomaterials can be limited by inhibition of inflammasome-related pathways.

Aspirin reduces significantly reduces the FBR in response to silicone implants, as shown in figures (*⁺⁺*P ≤ 0.05)

Advantages:
- Improve the function of biomaterials
- Reduce the need to replace biomaterials and devices
- Reduce side effects from inflammation related to biomaterials

Patent Application & Reference

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
Planar retinoid solves problems with current technology:

- Human model that emulates the choroid, retinal pigment epithelium (RPE), neurosensory retina, and vitreous in their native anatomical relationship.
- Scaffold and co-culture with RPE generates laminated retinoids for implantation or drug testing.
- Allows for the study of retinal differentiation, and patient specific mechanisms of retinal disease.
- Emulates both vitreal and eyedrop delivery mechanisms.
- Suitable for patients with mid and late-stage AMD, retinitis pigmentosa (RP), and related diseases.
- Provisional patents filed

Yale Contact: Valarie Truax, Ph.D., Yale University Office of Cooperative Research (203) 737-1689, Valarie.truax@yale.edu
Inadequate blood vessel formation is a major contributor to poor wound healing particularly with diabetic ulcers.

Yale researchers have discovered that a unique domain from a known protein can promote VEGF signaling by associating with the VEGFR.

Injecting this 27 amino acid peptide (SP) i.p. in neonatal mice increased retinal vessel growth.

Topical application of the peptide to the injury site in mice after ear punch markedly enhanced the rate of wound healing.

A provisional patent application has been filed.

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Filaggrin-Keratin Complex in Skin Protection and Treatment

- Profilaggrin and filaggrin (FLG) are multi-functional proteins in the maintenance of an optimal skin barrier. FLG monomers specifically bind to keratin (K) intermediate filaments, causing their aggregation into tightly packed macrofibrils and contribute to formation of keratin matrix, which acts as a scaffold for stratum corneum. FLG LOF mutation leads to ichthyosis vulgaris, the most common disorder of keratinization, and a strong genetic risk factor for atopic eczema.

- Currently, all the topical moisturizers on the market focus on lipid replenishment, prevention of water loss, and water absorption methods, or utilize FLG at the stage of final breakdown, post-keratin binding and have limited efficacy.

- We have identified two specific short (60-150 a.a.) segments of FLG that are critical for keratin aggregation. We are developing novel peptide-based agents that promote FLG-K binding; these can serve as novel treatment for atopical dermatitis, ichthyosis, psoriasis, and other skin conditions, as well as basis for new type of skin moisturizers.

- **Lead Innovator:** Christopher Bunick, M.D.

- **IP Status:** PRV application filed in 2018
• Immunoevasive human endothelial cells (ECs) have been developed using CRISPR/Cas9 gene editing technology to knock out the genes (CIITA, a class II major histocompatibility complex transactivator, and CD58) eliminating ECs’ immunogenicity.

• These immunoevasive cells retain the capacity to self-assemble into vascular structures in vivo and can be readily cultured from cord blood.

• Therefore these cells offer great potential for tissue repair or graft perfusion without eliciting immunorejection.

• **Intellectual property:** US patent application pending

• **Stage of Development:** Proof of principle in vivo studies are currently under development.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
Animal Product-free Human Stem Cell Culture Medium

- Animal-free product that avoids pathogen or immunogenic contamination of animal products.
- Improved cryoprotection viability to 50-60%.
- Growth as good as or better than the culture which using serum and/or conditional medium.
- Many applications:
 - Differentiate hESC into different tissue/stem/progenitor cells in vitro
 - use as an *in vitro* model for studying cell proliferation and differentiation
 - drug screening platform for cell proliferation, differentiation, and regeneration
 - Produce proteins by transfection or transduction of DNA or RNA
 - Deliverance of different genes into hESC for research or commercial usage
 - Establish hESC bank with embryo has different genetic background and MHC
 - use as a base for unlimited source of cells for therapy

Patent Application & Reference

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Small molecules that modulate Wnt signaling will likely provide new insights into the regulation of this key developmental pathway and ultimately provide pharmacological agents to control Wnt signaling in vivo.

- Yale researchers have identified WNT pathway agonists which are readily available.
- These compounds synergistically potentiated Wnt3a/β-catenin signaling and enhanced the antitumor efficacy of various anti-cancer treatments in animal models.
- These compounds can be used for tissue regeneration after chemotherapy, transplantation treatment for tissue degeneration diseases.
- The total market by 2015, covering the areas of Skin, Bone, Cartilage, Cardiovascular, and Other (Dental and Organ Regeneration or Replacement) is predicted to be about $2.1 billion, with a compound annual growth rate of 28%.
- OCR5095 has high potency, selectivity, low cost, easy to source, easy to synthesize, and have low toxicity.
- In vitro and in vivo studies using the OCR5095 have been performed.
Filaggrin-Keratin Complex in Skin Protection and Treatment

- Profilaggrin and filaggrin (FLG) are multi-functional proteins in the maintenance of an optimal skin barrier. FLG monomers specifically bind to keratin (K) intermediate filaments, causing their aggregation into tightly packed macrofibrils and contribute to formation of keratin matrix, which acts as a scaffold for stratum corneum. FLG LOF mutation leads to ichthyosis vulgaris, the most common disorder of keratinization, and a strong genetic risk factor for atopic eczema.

- Currently, all the topical moisturizers on the market focus on lipid replenishment, prevention of water loss, and water absorption methods, or utilize FLG at the stage of final breakdown, post-keratin binding and have limited efficacy.

- We have identified two specific short (60-150 a.a.) segments of FLG that are critical for keratin aggregation. We are developing novel peptide-based agents that promote FLG-K binding; these can serve as novel treatment for atopical dermatitis, ichthyosis, psoriasis, and other skin conditions, as well as basis for new type of skin moisturizers.

- **Lead Innovator:** Christopher Bunick, M.D.

- **IP Status:** PRV application filed in 2018
A new method to increase longevity or treating cellular stress

- Over-expressing either pch-2 or bmk-1 in C. elegans by microinjection extends worm lifespan by ~25% and enhances worm survival survival in response to various stressors including oxidation, apoptosis and DNA damage.

- Inhibition of either gene by RNAi results in shortened lifespan. Moreover, the over-expression of the human equivalents of these two genes in cultured fibroblasts confers resistance to environmental stressors, and promotes cell survival after exposure to radiation or oxidative stress.

Over-expression of the genes extends lifespan and stress-resistance in C. elegans. Gene expression level of (a) pch-2 and (c) bmk-1 and lifespan measurement of (b) pch-2 and (d) bmk-1.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research (203) 785-3074, hong.peng@yale.edu
Orphan & Other Therapeutic Areas
Wolfram syndrome = rare genetic disorder
 – Loss of function of gene WFS1
Homozygous mutation (1 in 770,000 in US)
 – blindness, deafness, mood disorders
Heterozygous patients
 – 1% of US, 8-fold higher mood disorders
No available treatment
 – palliative care only
Target structures + hits known
Screenable/Structure-based drug design
Animal models available for in vivo validation

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Absence of pigment epithelium-derived factor (PEDF) causes Osteogenesis Imperfecta (OI) in humans.

OI Type VI is an autosomal recessive disease manifested by severely impaired bone mineralization and fractures in early childhood.

PEDF is a regulator of MSC differentiation to the osteoblast lineage. PEDF modulates Wnt/β-catenin signaling to direct MSC fate toward osteoblasts. Restoration of PEDF in this PEDF KO mice corrected the bone phenotype (figure).

Recently it was shown that PEDF treatment restores bone elasticity and reduces bone brittleness in the PEDF-KO mouse model (Unpublished data).

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
OCR 5775: Clotting Disorders

Human Serum Enzyme Overcomes Multiple Ultra-Rare Congenital Clotting Disorders

OCR 5775 is a therapeutic protein designed to overcome clotting defects:
- it is resident to the circulatory system
- has been purified and crystallized to ultra-high resolution
- its activity is known to be triggered only at sites of platelet degranulation triggered under physiological conditions (i.e. response to vascular damage)

As shown in the figure, weak aggregation is seen in the absence of OCR 5775 (blue curve) in a patient with a poorly characterized platelet storage disease. The addition of 50 nanomolar of OCR5775 (black curve) normalizes the clotting profile.

This technology may also have utility in a critical care situation such as the Emergency Department for acute bleeding episodes (e.g., NSAID toxicity), first response, or military situations.

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research (203) 785-6038, david.lewin@yale.edu

Patent Application & Reference
Drug delivery:
Nanoparticles, Topical Technology
& Sustained Delivery
Platform for Developing Mechanism-Based PTP Inhibitors

- A novel Selenosulfide platform for phosphatase inhibitors.
- A prodrug approach that uses the high glutathione levels to deliver the active moiety intracellularly.
- The prodrug portion enables optimization of pharmaceutical properties.
- Proof of concept shown with mPTPA from mycobacterium tuberculosis and the CNS enzyme STEP phosphatase.
- A provisional patent application has been filed.

<table>
<thead>
<tr>
<th>enzyme</th>
<th>mPTPA</th>
<th>mPTPB</th>
<th>STEP</th>
<th>LMW-PTP</th>
<th>PTP1B</th>
<th>CD45</th>
<th>LAR</th>
<th>TC-PTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀ (µM)</td>
<td>0.53</td>
<td>>100</td>
<td>6.2</td>
<td>43</td>
<td>50</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>selectivity</td>
<td>--</td>
<td>>100</td>
<td>12</td>
<td>81</td>
<td>94</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

Table 1. Selectivity profile of mPTPA inhibitor 2 against a panel of human PTPs and mPTPB. IC₅₀ values were determined in the presence of a physiological intracellular concentration of GSH 1 mM.

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Novel endothelial-specific molecules (ESMs) actively cross BBB and carry other molecules with them

The Problem: Brain and retina are shielded to prevent entry of infectious agents and toxins and maintain ionic homeostasis. >98% of small molecules and macromolecules are prevented from crossing the BBB and BRB. Drugs that cross BBB are limited to small lipophilic molecules. Larger hydrophilic molecules do not cross BBB/BRB. We created a library of tens of small molecule ESMs with exquisite specificity and efficiency for entering blood endothelial cells and tested them *in vivo*.

Our solution: ESMs are inherently fluorescent and can be tracked *in vivo* (*Fig1*). ESMs cross BBB through SLC membrane transporters, reach endothelial cytosol and nucleus, when administered topically (*Fig 2*) and I.V. (not shown)

ESMs *can be conjugated* to molecules up to 1000 Da (testing of large molecules under way) without loss of BBB-crossing properties and endothelial specificity and *serve as molecular trojan hoses to transport drug across the BBB* (*Fig 3*).

Lead Innovator: Jaime Grutzendler, M.D.

IP Status: PRV application filed in 2018

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
Multifunctional nanoparticle drug-delivery system synergistically responsive to tumor-relevant pH and intercellular reduction potential.

Designed functions in PEG-poly(amine-co-disulfide ester) NPs

- Hydrophilic PEG outer layer for high colloidal stability and extended *in vivo* circulation to achieve high accumulation in tumors due to EPR effects
- Tertiary amino groups in the NP cores for acid-triggered particle swelling to facilitate fast drug release (A)
- Disulfide linkages in the NP cores for intracellular glutathione (rich in tumor cells)-mediated polymer chain cleavage, NP disassembly, and further accelerated drug release (A)
- Ester functionalities for biodegradability and low toxicity

Key observations

- Substantial drug (DTX) accumulation in tumors vs normal organs (B)
- Minimal toxicity to normal organ cells
- High potency in inhibiting CT-26 tumor growth in mice (C)
Polymeric Bile Acid Formulations for Targeted Delivery

- A new class of polymer biomaterials (PUDCA) that are selectively taken up and retained in the pancreatic, hepatic and colon microenvironment.
- Formulated as orally administered, safe and biodegradable nanoparticles.
- Unique properties: encapsulates drugs and/or agents, pH-responsive, enables sustained release.
- **Indications**: targeted delivery of drugs and tracking/imaging agents to sites of pancreatic, hepatic and colonic inflammation. For therapy and diagnostic uses
- **Innovator**: Tarek Fahmy, Ph.D.
- **IP status**: PCT/US Application filed 62/214,648
- **Publications**: Unpublished work

FIG. Histology images of pancreatic sections from mice that were orally treated with PBS or PUDCA nanoparticles containing iron oxide (SPIO-PUDCA). Iron Oxide is assayed using the Prussian Blue stain which appears distinct in the pancreas.
Nanoparticles for Controlled Delivery of Nucleic Acids

- Numerous formulations for biodegradable nanoparticles for controlled nucleic acid delivery:
 - achieve high loading and encapsulation
 - retain chemical and functional integrity of cargo
- Applications:
 - highly efficient non-viral vectors for DNA/gene delivery;
 - siRNA/mRNA/PNA/oligo delivery for RNA silencing;
 - gene transfection of stem cells;
 - treatment of genetic diseases and cancers, combined gene and drug delivery
- Lead Innovator: W. Mark Saltzman, Ph.D.
- Pending and Issued Patents: 9,272,043, PCT/US2015/030169, 14/988,538, others

Tumor size in mice treated with nanoparticle-coated TRAIL (pro-apoptotic gene) was significantly smaller than that in mice treated with no-coat TRAIL or saline.

Yale Contact: John Puziss, Ph.D., Yale University Office of Cooperative Research
(203) 785-6167, john.puziss@yale.edu
Adhesive, Non-absorbent Nanoparticles for Dermal Applications

- Biodegradable nanoparticles that stick to skin, are removed by friction, but don’t wash off
- Demonstrated efficacy using sunblock in rodent models
- Prevents UV damage to skin
- Wipes off with towel, doesn’t wash off with water
- Many possible non-prescription and prescription applications
- Clinical trial of sunblock currently enrolling subjects

Reference: Deng *et al.* (2015). *Nature Materials*

Patent Application filed

Lead Innovator: Mark Saltzman, Ph.D.

BNPs encapsulating an infrared dye, IR-780, were applied to the dorsal skin of mice. After wiping with a wet towel (T) or washing with water (W), their skin retention was imaged with Xenogen. Deng *et al.* (2015). *Nature Materials*
supramolecular nanoparticles (SNPs) that effectively enhance the oral bioavailability of cargo drugs;

Functional nano- or microstructures from five classes of MNPs and their synthetic analogs and derivatives are stable in strong acidic environment (as low as pH 1.0) and can effectively penetrate the gastrointestinal tract;

Small compound chemotherapeutic agents and peptide therapeutics encapsulated therein show a much greater plasma concentration and targeted tissue adsorption following oral administration and strong efficacy in treating tumors, diabetes, and stroke in animal models.

Intellectual Property: Patent Application Pending

Enhanced bioavailability and stability of orally delivered drugs. (A) Oral administrated drug paclitaxel (PTX)-SNPs reduced tumor volumes substantially compared to control group, free PTX, and empty SNPs. (B) Exposure to pH 1.0 did not change the release of PTX from SNPs.
Diagnostics/Biomarkers/Imaging
Quantitative Immunofluorescence was used to examine Tumor-Infiltrating Lymphocytes (TIL) in pretreatment NSCLC tumor samples.

TIL levels of CD3, Granzyme B and Ki67 revealed a dormant phenotype of TIL’s in pretreatment tumor samples that correlated with clinical response to Checkpoint Inhibitor therapy.

Patients with tumors displaying a combination of high CD3, low Granzyme B and low Ki67 levels displayed the best response to Checkpoint Therapy.

Early evaluation of NSCLC tumors with this method may select patients most likely to benefit from these therapies.

A PCT patent application has been filed.

Kaplan-Meier graphical analysis of 3-year progression free survival and overall survival of lung cancer cases treated with immune checkpoint blockers according to their TIL phenotype panel:
Type 1: Low CD3
Type 2: High CD3 + Low Granzyme B + Low Ki67
Type 3: High CD3 + High Granzyme B OR High Ki67

The number of cases in each group and the log-rank P value is indicated in the chart.
Detection of β cell death in diabetes using differentially methylated circulating DNA

- A powerful biomarker and diagnostic indictors have been identified for ongoing β cell death in diabetic patient;
- A method of measure such marker has been developed

Intellectual Property: US and European patents have been issued

Contact: Hong Peng, Ph.D., Yale University; (203) 785-3074, hong.peng@yale.edu
NOVEL DEUTERIUM METABOLIC IMAGING (DMI)

- Novel magnetic resonance-based imaging technique.
- Provides **3D maps of active metabolism in 20 min** scan.
- Detects metabolism of nutrients/substrates such as glucose or acetate labeled with the stable isotope deuterium (2H).
- Can be easily implemented on **existing 3T and 7T MRI scanners**; very robust method: potential for push-button imaging.
- Substrates: 2H-labeled substrates and nutrients are commercially available and affordable.
- DMI has been performed in **animals and humans**, using 2H-glucose and 2H-acetate, imaging **brain and liver metabolism**.
- After an oral dose of 2H-labeled glucose, DMI provided unprecedented image contrast based on glucose metabolism in a patient with GBM brain tumor.
- Can be applied in other organs and tissues and to any pathology, intervention or treatment with a metabolic component.
- **IP status**: PRV filed.
- **Innovators**: Henk De-Feyter, Robin de Graaf.

DMI visualizes the Warburg effect in a patient with GBM after oral 2H-glucose intake.

a) Clinical MR images acquired in a patient diagnosed with GBM in the right frontal lobe. b, c) T2-weighted MRI and overlaid DMI maps in two slices that contain the tumor lesion. The MRI and DMI data shown in (c) correspond to the slice position of the clinical MR scans in (a). DMI maps show homogenous distribution of 2H-glucose across the slices but lower levels of 2H-labeled glutamate+glutamine (Glx) and a higher concentration of 2H-labeled lactate in the tumor lesion compared to normal-appearing brain. d) 2H NMR spectra from selected locations depicted in the T2W MR image, including tissue (1, 3) within the lesion as seen on T1W CE; (2) from normal-appearing occipital lobe and (4) containing cerebrospinal fluid from the left lateral ventricle. e) 3D illustration of combined MRI and DMI of the lactate/Glx ratio representing the spatial distribution of the Warburg effect.
• Whole-exome sequencing of tumor samples identified a subset of tumors with a disproportionally large number of somatic mutations.
• This hypermutator phenotype is due to somatic mutation in DNA Polymerase epsilon (PoLE).
• Tumors with this phenotype and PoLE mutation are highly immunogenic (see figure).
• Sequencing of tumor PoLE for somatic mutation is an efficient way to select patients who will best respond to immunotherapy.
• A patent application has been filed.

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Novel endothelial-specific molecules (ESMs) actively cross BBB and carry other molecules with them

• The Problem: Brain and retina are shielded to prevent entry of infectious agents and toxins and maintain ionic homeostasis. >98% of small molecules and macromolecules are prevented from crossing the BBB and BRB. Drugs that cross BBB are limited to small lipophilic molecules. Larger hydrophilic molecules do not cross BBB/BRB. We created a library of tens of small molecule ESMs with exquisite specificity and efficiency for entering blood endothelial cells and tested them in vivo.

• Our solution: ESMs are inherently fluorescent and can be tracked in vivo (Fig1)

• ESMs cross BBB through SLC membrane transporters, reach endothelial cytosol and nucleus, when administered topically (Fig 2) and I.V. (not shown)

• ESMs can be conjugated to molecules up to 1000 Da (testing of large molecules under way) without loss of BBB-crossing properties and endothelial specificity and serve as molecular trojan hoses to transport drug across the BBB (Fig 3).

• Lead Innovator: Jaime Grutzendler, M.D.

• IP Status: PRV application filed in 2018

Figure 1. In vivo 2-photon brain imaging set up.

Figure 2. Specific vascular labeling by topical application of ESMs to retina (left) and brain surface (right)

Figure 3. ESM-Methotrexate Conjugate. In vivo two-photon imaging of brain cortex showing endothelial and interstitial labeling with an ESM-methotrexate conjugate.

Yale Contact: Lolahun Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahun.kadiri@yale.edu
Previous dual-brain studies during social interaction have demonstrated synchronization of brain activity of adult participants.

Characterization of cross-brain synchronization between children and their mothers can be used to understand social communication in ASD using a novel, clinically usable, non-invasive brain imaging technology, functional near-infrared spectroscopy (fNIRS).

It is hypothesized that cross-brain synchronization of regions associated with language, song, and vision occurs in typically developing infants or toddlers and their mothers during communication.

In contrast, we predict that infants and toddlers at high risk for autism will show reduced or altered cross-brain synchronization with their mother’s brain activity during speech or songs.

Although high-risk infants have similar brain patterns to children diagnosed with ASD, they do not show the characteristic ASD behavior. Therefore this may be a novel way to diagnose autism in high-risk infants much earlier than current methods.

Lead Innovator: Joy Hirsch, PhD

IP status: PCT/US15/58835 pending

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Novel matrix metalloproteinases (MMPs) Inhibitor and MMP-targeted imaging tracers

- Upregulation of MMPs is associated with a wide range of diseases including cancers, inflammation and cardiovascular diseases.
- Measurement of MMP expression and activation in vivo could enable physicians to accurately diagnose and treat MMP-associated diseases.
- Currently there are no tracers available in the clinic for imaging MMP activity.
- A new type of a MMP inhibitor (1) has been developed, which also serves as a versatile scaffold (3) for developing MMP-targeted imaging agents.
- Additionally, a novel precursor was also designed as a parent building block for making different type of hydrophilic MMP imaging tracers.
- These novel scaffolds display improved pharmacokinetics and water solubility as compared to previously reported MMP SPECT probes (i.e. RP805)
- **Lead Innovator**: Mehran Sadeghi, PhD
- **IP status**: PCT/US2017/026610

99mTc-RYM1 imaging of carotid aneurysm

Ex-vivo photography (A) and autoradiography (B) of aortae and carotid arteries from apoE-/- mice with CaCl2-induced carotid aneurysm injected with 99mTc-RYM1 without (left) and with the pre-injection of an excess of MMP inhibitor, RYM (right).

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Infection-induced preterm birth significantly raises the risk of the newborn developing early onset neonatal sepsis (EONS) and represents a significant contributor to morbidity and mortality worldwide.

Premature newborns represent about 11% of the approximately 4 million live births in the US annually and are most susceptible to developing EONS.

The standard of care is empiric antibiotherapy based upon minimal symptomatic suspicions, but this poses undue risks to the newborn.

Using proteomic analyses, Yale researchers have identified biomarkers in cord blood samples that correlate with the development of EONS.

OCR5151 is a simple, quick and accurate test for the assessment of EONS that permits earlier treatment of those newborns at higher risk, but also avoids unnecessary treatment of newborns at no risk.

This diagnostic test can be easily incorporated into routine newborn testing, as cord blood sampling is used to monitor cord blood gases at delivery.

Yale Contact: Chris Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, christopher.unsworth@yale.edu
Many neurological and psychiatric diseases, such as Alzheimer's and Epilepsy, are characterized by misfiring synapses.

Currently, there is no way to visualize healthy or aberrant neuronal connections in the living human brain.

SV2A radioligands combined with positron emission tomography (PET) can be used to noninvasively quantify synaptic density in the living human brain.

Fluorine-18 labeled SV2A radioligands have a longer half-life (110 min) making them suitable for commercialization and clinical applications.

This promising method enables routine brain monitoring in patients with neurological diseases, where synaptic loss or dynamic changes in density could provide clues to prognosis.

Reference: Finnema et al. (2016) Science

Lead Innovator: Zhengxin Cai, PhD

IP status: Provisional application pending 62/460,541

PET evaluation with SV2A radioligand reveals unilateral sclerosis in epilepsy patients.

(Left) The white arrows indicate loss of SV2A radioligand binding in the mesial temporal lobe. (Right) Asymmetry indices between left and right hemispheres for healthy control subjects and between ipsilateral and contralateral hemispheres for epilepsy patients. Data are individual subjects.
There have been many approaches to accelerate parameter mapping, such as parallel imaging, MR fingerprinting, compressed sensing, etc.

Here we propose a novel acquisition and reconstruction strategy for accelerating parameter mapping, called SUPER for “Shift Undersampling improves Parameter mapping efficiency and Resolution”.

This technique is especially suitable for applications where multiple TIs or TEs are needed, and can improve either resolution or acquisition time. It can be applied to the following: edema imaging, myocardial infarction and fibrosis, iron overload in heart and liver, water-fat separation (Dixon methods), clinical neural imaging, functional MRI, solid tumor imaging. We demonstrate this technique in Figures 1 and 2 in vivo MOLLI, which is the standard cardiac T1 mapping method.

IP status: Provisional Patent Application No. 62/481,361

Lead Innovators: Dana Peters, Ph.D.; Chenxi Hu, Ph.D.

Reference: unpublished work

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research (203) 785-4164, lolahon.kadiri@yale.edu
Methods, Models, Assays & Devices
Heart Failure Recovery (HFR) Device

A device specifically designed to prevent readmissions and in hospital stay of patients with congestive heart failure

- Insertion under local anesthesia: key hole approach (minimally invasive)
- On demand device to treat CHF exacerbation.
- Subsequent office based care (no need for admission to hospital)
- Robust circulatory support to help tailor medical therapy.
- Avoids adverse events (pump thrombosis, GI bleeding, strokes and infection) that plague current LVAD devices (HeartMate, HertWare, Jarvik and MicroMed Debakey pumps)
- Device battery charged/powered wirelessly with no need for any dressing changes/external leads.
- **International PCT patent application ‘Heart Failure Recovery Device and Method of Treatment’**

The HFR device include a pump, a coil for wireless charging and a purging system to start/stop & clean the pump without surgery.

Yale Contact: Richard Andersson, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
Our solution: a first in class fully functional robust and inexpensive device that can be easily integrated into any cell injection system on the market, manual or robotic. This device provides real time (within 10 ms) confirmation of cell penetration by measuring membrane resistance and is independent of visualization or pressure feedback. We have built a prototype and tested the device on 78 samples.

Potential Applications:
(a) Sperm injection into an egg in human and animal reproduction (i.e., ICSI)
(b) Injection of genetic material, proteins, or other substances into live cells:
 (i) commercial production of drugs, antibodies, and vaccines
 (ii) treatment: cell and gene therapy; cancer therapy
 (iii) research

Intellectual property: A provisional US patent application was filed in October 2018

Yale Contact: Lolahon Kadiri, Ph.D., Yale University Office of Cooperative Research
(203) 785-4164, lolahon.kadiri@yale.edu
There are an estimated 61,380 new cases of endometrial cancer every year, typically in post-menopausal women.

Standard treatment of endometrial cancer after surgery requires the direct application of radiation internally (known as “intravaginal brachytherapy”).

Ideal radiation treatment occurs when the largest diameter of cylinder is used.

Current applicators of radiation therapy are cylindrical, uncomfortable, and limited at times by patient anatomy.

Patient comfort impacts treatment adherence, caregiver impression, and overall sense of well being.

IP status: Provisional Patent Application No. 62/478,341

Innovators: James Yu, M.D.; Amandeep Mahal
A powerful and versatile gene expression system for Bacteroides, the most common genus of bacteria in the human gut.

Expression of the gene-of-interest can be induced 5 orders of magnitude above background.

Works in the 11 Bacteroides species tested.

Works in mice solely colonized with the modified Bacteroides and mice carrying the modified Bacteroides with a complete microbial community.

Can be potentially used to deliver therapeutic agents through commensal bacteria as well as a research tool.

Enrichment-free analysis of temporal dynamics of RNA

- Ability to monitor global steady state RNA turnover and distinguish acute transcriptional changes.
- Allows for the identification of isoform-specific transcript dynamics.
- Tags new transcripts with 4-thiouridine (s^4U).
- 4-thiouridine is converted into cytidine analogs which leads to U-C mutations and marks new transcripts upon sequencing.
- Broadly applicable to any application with metabolic labeling.
A novel enzymatic and fluorescent probe, named ddRlucFcγ [deglycosylation-dependent Renilla luciferase (ddRluc) coupled with the Fc region of human IgG1], to quantify the efficiency of protein’s cytosolic access from outside the cell.

- ddRluc contains an asparagine at position 290 to which the N-linked glycan is added, and a threonine at position 292 to ensure glycosylation when the protein is expressed in eukaryotic cells. Linking ddRluc to the Fcγ fragment allows for stability and easy purification of the probe.

- A version lacking the N-glycan naturally present in the Fc region, the removal of which eliminates binding to Fc receptors, is also available.

- Intellectual property – Experiment protocols, materials and know-hows.

Fig 1. ddRlucFcγ activity is deglycosylation dependent. Total extract from HEK293T cells expressing ddRlucFcγ (top) and purified ddRlucFcγ isolated from transfected human Expi293 cells (bottom) were incubated with or without PNGase F followed by luciferase assay.

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
Generating sgRNA Libraries for Complete Functional Analysis of Human Genome

- Over 98% of the human genome does not code for proteins. Genetic and epigenetic alterations of these noncoding genomic elements often underlie human diseases. A major challenge to studying the functions of noncoding as well as coding regions of the genome is to systematically identify functionally important regions.

The “Molecular Chipper” technology is superior to existing technologies:

- takes any DNA pieces and convert them into a dense-coverage CRISPR sgRNA library, using standard molecular biology techniques.
- is easy to use, cost-effective, and generates sgRNA libraries at base pair resolution and cost effective.
- allows cost effective generation of Photospacer-Adjacent-Motif (PAM)-specific sgRNA libraries from any given pieces of DNA.
- **Intellectual property** – A provisional patent application has been filed

Yale Contact: Hong Peng, Ph.D., Yale University Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
Many neuropsychiatric conditions, including OCD, are characterized by regionally abnormal brain activity.

Only ~60% of patients respond to standard OCD interventions and these options affect the entire brain causing undesirable off-target effects.

Studies have revealed hyperactivity of a specific brain region, the OFC, in patients with OCD making it an attractive therapeutic target.

NIRS-driven neurofeedback therapy is optimized for such conditions: it is more affordable than fMRI, portable, non-invasive and targeted to control activity of affected neural areas.

In NIRS, the signal reflects the metabolic activity of a defined brain area and patients can use the visual readout of this activity to learn via trial-and-error to control its activity.

This therapy can lead to altered functional connectivity within the targeted circuitry that persists even in the absence of ongoing efforts at control.

Lead Innovator: Chris Pittenger, MD/PhD

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Previous dual-brain studies during social interaction have demonstrated synchronization of brain activity of adult participants.

Characterization of cross-brain synchronization between children and their mothers can be used to understand social communication in ASD using a novel, clinically usable, non-invasive brain imaging technology, functional near-infrared spectroscopy (fNIRS).

It is hypothesized that cross-brain synchronization of regions associated with language, song, and vision occurs in typically developing infants or toddlers and their mothers during communication.

In contrast, we predict that infants and toddlers at high risk for autism will show reduced or altered cross-brain synchronization with their mother’s brain activity during speech or songs.

Although high-risk infants have similar brain patterns to children diagnosed with ASD, they do not show the characteristic ASD behavior. Therefore this may be a novel way to diagnose autism in high-risk infants much earlier than current methods.

Lead Innovator: Joy Hirsch, PhD

IP status: PCT/US15/58835 pending

Yale Contact: Christopher D. Unsworth, Ph.D., Yale University Office of Cooperative Research (203) 785-3846, Christopher.unsworth@yale.edu
Utility

Selenocysteine (Sec) Method
- Industrial Enzymes
 - Purified or in vivo
 - Cysteine proteases for detergent additives
- Industrial proteins with novel properties
- Rapid Purification
- Efficiencies of incorporation of Sec/U: 70-100%

Phosphoserine (Sep) Method
- Dehydroalanine
 - Target for chemical modification of proteins to yield the **natural protein modifications**
- Amenable to “Click Chemistry”

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
Site-Specific Efficient Incorporation of Phosphoserine into Proteins Using a Novel EF-Tu and tRNA Charging System

- In general, phosphoproteins are highly unstable and difficult to produce.
- OCR3105/5254 pertains to the creation of a simple tool kit for the efficient site specific, phosphorylation signal-independent, introduction of phosphoserine into proteins in vitro and in vivo using a novel vector compatible with complementary bacterial strains and mammalian tissue culture.
- This technology provides a method of site specific cotranslational incorporation of phosphoserine into proteins, including human MEK-1.
- The production of phosphoprotein is inducible by phosphoserine and the system is compatible with transgenic methodologies.
- Applications:
 - research tools for the study of kinases and phosphatases
 - development of cell-based screens for new drug discovery
 - the manufacture of phosphoproteins for applications such as antibody generation
 - protein array manufacture
 - the target proteins in signal transduction pathways

Issued Patent & Reference

Yale Contact: David Lewin, Ph.D., Yale University Office of Cooperative Research
(203) 785-6038, david.lewin@yale.edu
PremieBreathe HHFNC system

Portable Compact High Flow Nasal Cannula (HHFNC) Therapy for Neonates and Infants

- Affordable, breathing aid to support newborns suffering from respiratory distress in resource-limited facilities.
- PremieBreathe avoids complications that result from conventional bCPAP nasal cannula and dry cold high pressure, such as nasal trauma including granulation, ulceration of the nostrils, and distended abdomen which can lead to malnutrition.
- UV water sterilization mechanism eliminates bacterial contamination.
- Mobile unit replicates the outputs of commercial immobile devices for approximately 1/10 of the cost, or $500.

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu

Fig 1. 2018 fully-functional HHFNC system prototype with consistent bench level functionality and desired airflow rate of 0-10 L/min, temperature of 32 degrees Celsius and relative humidity of 90-95%.
There have been many approaches to accelerate parameter mapping, such as parallel imaging, MR fingerprinting, compressed sensing, etc.

Here we propose a novel acquisition and reconstruction strategy for accelerating parameter mapping, called SUPER for “Shift Undersampling improves Parameter mapping efficiency and Resolution”.

This technique is especially suitable for applications where multiple T1s or TEs are needed, and can improve either resolution or acquisition time. It can be applied to the following: edema imaging, myocardial infarction and fibrosis, iron overload in heart and liver, water-fat separation (Dixon methods), clinical neural imaging, functional MRI, solid tumor imaging. We demonstrate this technique in Figures 1 and 2 in vivo MOLLI, which is the standard cardiac T1 mapping method.

IP status: Provisional Patent Application No. 62/481,361

Lead Innovators: Dana Peters, Ph.D.; Chenxi Hu, Ph.D.

Reference: unpublished work

Figure 1: Image comparison: the same time is used, the image resolution doubles

Figure 2: Image comparison: time is reduced un SUPER, while image quality is retained
In-vitro lung on a chip system used to test pharmacological intervention of fibrotic diseases. Allows evaluation of matrix composition and stiffness driven fibrotic progression, and reversal using therapeutic intervention.

- First group to decellularize, solubilize, and conjugate matrix from healthy and diseased patient tissues to the tunable hydrogels
- Accurately mimics the tissue micro-environment, i.e., what the cells in the tissue actually sense
- Can very accurately reflect both the healthy and the diseased condition
- Large range of healthy or diseased tissues: lung fibrosis, cirrhosis, heart fibrosis, scleroderma, COPD, emphysema.
- **Innovator**: Anjelica Gonzalez, Ph.D.

The model can reproduce all stages of a disease from healthy to strongly fibrotic by modifying the stiffness of the substrate.

Yale Contact: Richard Andersson, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
A bioreactor system for whole rat lungs that controls dissolved gas levels (Fig. 1A-B). The system is able to quantify and predict the gas exchange within the bioreactor using a lumped parameter model (Fig. 1C, 2A-B).

This system enables the maintenance of alveolar levels (100 mmHg) of dissolved oxygen for the duration of lung culture. The mathematical model enables non-invasive and real-time estimation of cell number and the proliferative state of lung tissue simply through dissolved oxygen measurements.

\[\dot{C}_B = F_D (C_D - C_B) - F_P (C_B - C_L) \]
(Eq. 1)

Figure 1 - Design of the whole lung bioreactor for controlling gas exchange.

- \(C_D\): concentration of oxygen leaving the oxygenator element.
- \(C_L\): concentration of oxygen leaving the lung.
- \(C_B\): concentration of oxygen flow out of the bioreactor.
- \(F_D\): fluid flow rate through the perfusion loop.
- \(F_O\): fluid flow rate through the oxygenation loop.

Figure 2 – Gas Exchange Characterization Results.

Patent application filed.

Ref: Controlled Gas Exchange in Whole Lung Bioreactors. Journal of Tissue Engineering and Regenerative Medicine, June 15, 2017.

Yale Contact: Hong Peng, Ph.D., Yale Office of Cooperative Research
(203) 785-3074, hong.peng@yale.edu
The Problem: Clinical exam and conventional physiologic measures are limited and often miss secondary brain injury. Secondary brain injury, if detected early, can be reversible.

Current Approach: Separate probes perform functions separately.

Intracranial pressure | Brain temperature | Cerebral blood flow | Brain tissue oxygen ($P_{BT\text{O}_2}$) | Intracranial EEG | Cerebral biomarkers (lactate, glutamate, etc.)

Shortcomings:
Multiple probes require multiple burr holes - placement complexity
Additional risk over 18,000 procedures per year
The probes sample different regions of the brain
Multiple external interface devices and monitors

Solution: **NeuroProbe is an all-in-one single multimodal brain probe.**
- Does not require an OR procedure: can be placed at the bedside
- Single, powerful interface device: can be easily integrated with various EMR systems and bedside monitors

Status: Sensor components demonstrated
Cleared FDA presubmission 2018

Yale Contact: Richard Andersson, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
PEGylated Amnion scaffold for use in wound management

Wound repair hydrogel combines the benefits of amnion - scarless healing - with a hydrogel scaffold.

Advantages compared with amnion sheet:

- Significantly less wound contraction
- Faster surface closure
- Lower infection risk
- 8 times less amnion used
- Utilizes FDA approved materials
- Conforms to the wound and provides greater shear strength in healing.

- Can be applied as a gel and cured in white light,
- or as a prefab dressing which provides a much longer shelf-life than amnion sheets.

The scaffold (II) shows better performance than decellularized skin and skin grafts on animal models.

Diabetic foot ulcer; corneal repair; burn wound etc. Mechanical properties (mechanical stiffness of the scaffold, individual pore size and porosity) can be tuned through a templating method at Yale, which is not known in any other open wound dressing.

Yale Contact: Richard Andersson, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
Thank you