Protecting Synapses to Treat Neurodegenerative Diseases
Allyx Therapeutics Founding Team

Stephen Strittmatter, MD, PhD
Allyx Therapeutics
Founder
Director, Yale Alzheimer’s Disease Research Center
Vincent Coates Professor of Neurology and Professor of Neuroscience
Director, Yale Program in Cellular Neuroscience and Repair

Stephen Bloch, MD
Allyx Therapeutics
CEO
sbloch@allyxthera.com

Kevin Malobisky, PhD, MS, RAC
Regulatory Advisor
Former SVP Global Regulatory Affairs, Quality & Compliance
Achillion Pharmaceuticals

Timothy Siegert, PhD
Allyx Therapeutics
Director of Preclinical
Director of Business Development
tsiegert@allyxthera.com

Paul Fonteyne, MS, MBA
Business & Strategy Advisor
Former President and CEO
Boehringer Ingeheim USA

Canaan

Yale

ReNetx

Boehringer Ingelheim

Yale

Ra Pharma

Achillion

Tavanta
ALZHEIMER’S DISEASE
BY THE NUMBERS

5.8 Million Patients in the US

40% Patients in MCI Stage of Disease

6th Leading Cause of Death in US

17 Million Patients in US by 2050

Currently No Disease Modifying Therapies Available
Tenets of Allyx
Path to Developing a Disease Modifying AD Therapy

1. Targeting synapse loss is required as it is the underlying driver of disease progression

2. Conduct animal studies in a manner that best models human disease progression and clinical treatment paradigms with replication across multiple models

3. Utilize PET imaging biomarkers as a powerful means to de-risk clinical development and validate mechanism of action

4. Leverage non-dilutive funding available from the NIH at each stage of the development process to maximize investor equity and returns
ALX-001 – mGluR5 Silent Allosteric Modulator (SAM)
Optimized Mechanism of Action and TPP for AD Therapy

mGluR5 is Essential for Cognition
Central Receptor for Pathophysiological Synapse Dysfunction and Loss

Silent
Glu Signaling
Aβ/PrP Signaling

Normal Synaptic Physiology
Rescue AD Pathophysiology

In-licensed portfolio of mGluR5 allosteric modulators from BMS
Highly potent and selective small molecule. Preferentially delivered to the brain.
Solid oral formulation and expected QD dosing
Disease reversal demonstrated in 3 different mouse models of Alzheimer’s disease
Wide therapeutic window validated by primate receptor occupancy study

IND activated March 2021 with Phase 1a currently underway at the Yale Alzheimer’s Disease Research Center
ALX-001 **Restores** Learning and Memory Deficit in Mouse Model of AD and **Reverses** Synapse Loss

Rescues Memory Deficit

- Novel Object Recognition

Reverses Synapse Loss

- Synapse Quantification

Aβ Plaque Levels Are Unchanged

- Plaque Quantification

ALX-001 Reverses Disease In Preclinical Models

Model: APP/PS1
Age: 12-month old
Status: Established AD Phenotype
Treatment: 3.75 mg/kg BID
Duration: 1-Month
Translatable Imaging Technologies Mitigate Clinical Risk

<table>
<thead>
<tr>
<th>Non-Clinical</th>
<th>Safety Study in HV</th>
<th>Safety Study in AD Patients</th>
<th>PoC Study in AD Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1a</td>
<td>Phase 1b</td>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early Clinical Development

mGluR5 PET

Title: Early Clinical Development

Measure ALX-001 target engagement at predicted therapeutic concentrations and relationship with safety.

Late Clinical Development

Synapse Targeting PET

Title: Late Clinical Development

Establish proof of concept by tracking synapse preservation with ALX-001 treatment in patients.
Focus on neuronal synapse protection and rescue

Distinct mechanism of action from Aβ or Tau lowering technologies

Genetic link to GWAS AD risk variant

Expedited and capital efficient plan to Proof of Concept

Contact: tsiegert@allyxthera.com