Targeted Therapy for T-cell Lymphomas

Demetrios Braddock, MD/PhD
Associate Professor of Pathology (Hematopathology)
demetrios.braddock@yale.edu
203-787-1278

Francine Foss, MD
Professor of Medicine (Hematology)
and of Dermatology
francine.foss@yale.edu
203-787-5312

Samuel Katz, MD/PhD
Associate Professor of Pathology (Hematopathology)
Samuel.katz@yale.edu
203-785-2757

Elias Lolis, PhD
Professor of Pharmacology
elias.lolis@yale.edu
203-785-6233
Physiological and Pathologic Roles of CXCR5: A Therapeutic Target for Angioimmunoblastic T cell Lymphoma (AITL)

- AITL is a rare T cell lymphoma, 3000 cases per year
- **Median survival** 50% at 2 years, 30% at 5 yr
- All AITL cells secrete CXCL13 and express CXCR5 receptor
- Microenvironment has increased secretion of CXCL13
- Cutaneous T cell lymphoma (CTCL) patients may also express CXCR5 on the malignant cells and expression is associated with a worse outcome

Moser, Front. Immunol., 2015
Proof-of-Principal for CXCR5 Small Molecule Antagonism at Nanomolar Concentrations

Inhibition of Gαq-mediated Ca²⁺ flux at an EC₈₀ of CXCL13

<table>
<thead>
<tr>
<th></th>
<th>Compound A+EC80</th>
<th>Compound B+EC80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log IC₅₀</td>
<td>-6.779</td>
<td>-6.969</td>
</tr>
<tr>
<td>HillSlope</td>
<td>-1.356</td>
<td>-1.492</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>1.664e-007</td>
<td>1.075e-007</td>
</tr>
</tbody>
</table>
In Vivo Proof-of- Principle in a Human AITL PDX Mouse Model

- NSG (NOD/SCID, IL-2R knockout) mice
- Patient-derived AITL tissue with CXCR5 at 50% of other patients
- Oral gavage 2x/day with vehicle or 40 mg/kg Compound A

% Human CD45 in Bone Marrow

<table>
<thead>
<tr>
<th></th>
<th>% hCD45 in BM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>20.0±1.4</td>
</tr>
<tr>
<td>Compound A</td>
<td>15.8±1.2</td>
</tr>
</tbody>
</table>

\[**p=0.0017\]

% Human CD45 in Peripheral Blood

<table>
<thead>
<tr>
<th></th>
<th>% hCD45 in PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>60.0±1.8</td>
</tr>
<tr>
<td>Compound A</td>
<td>45.2±2.0</td>
</tr>
</tbody>
</table>

\[**p=0.0013\]

Unpaired t test

- P value
 - 0.0017
- P value summary
 - **
- Significantly different (P < 0.05)?
 - Yes
- One- or two-tailed P value?
 - Two-tailed
- t, df
 - t=3.882 df=14

- P value
 - 0.0013
- P value summary
 - **
- Significantly different (P < 0.05)?
 - Yes
- One- or two-tailed P value?
 - Two-tailed
- t, df
 - t=4.016 df=14
Phage Display Screen for Biotherapeutics and CAR T

- Phage display library of 168,000 CXCL13 variants used to screen for five rounds to identify potent variant CXCL13 antagonists.

- NGS and bioinformatics to determine 102 sequences likely to represent most potent sequences.

Target prevalence and enrichment factor of 24 (of 102) redacted sequences

<table>
<thead>
<tr>
<th>Translation</th>
<th>Target prevalence</th>
<th>Enrichment factor</th>
<th>Translation</th>
<th>Target prevalence</th>
<th>Enrichment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.002748342</td>
<td>infinity</td>
<td></td>
<td>0.001948505</td>
<td>4059.375</td>
</tr>
<tr>
<td></td>
<td>0.001652557</td>
<td>infinity</td>
<td></td>
<td>0.001867882</td>
<td>2194.27778</td>
</tr>
<tr>
<td></td>
<td>0.001507676</td>
<td>infinity</td>
<td></td>
<td>0.001636991</td>
<td>2273.59722</td>
</tr>
<tr>
<td></td>
<td>0.001458984</td>
<td>infinity</td>
<td></td>
<td>0.001608654</td>
<td>2234.23611</td>
</tr>
<tr>
<td></td>
<td>0.001448008</td>
<td>infinity</td>
<td></td>
<td>0.001582711</td>
<td>3297.3125</td>
</tr>
<tr>
<td></td>
<td>0.001325678</td>
<td>infinity</td>
<td></td>
<td>0.001420269</td>
<td>2958.89583</td>
</tr>
<tr>
<td></td>
<td>0.00126102</td>
<td>infinity</td>
<td></td>
<td>0.001307318</td>
<td>2723.58333</td>
</tr>
<tr>
<td></td>
<td>0.002484124</td>
<td>2587.625</td>
<td></td>
<td>0.001271597</td>
<td>2649.16667</td>
</tr>
<tr>
<td></td>
<td>0.002466164</td>
<td>2568.91667</td>
<td></td>
<td>0.001182793</td>
<td>2464.14583</td>
</tr>
<tr>
<td></td>
<td>0.002261215</td>
<td>3140.58333</td>
<td></td>
<td>0.001176606</td>
<td>2451.27083</td>
</tr>
<tr>
<td></td>
<td>0.002221702</td>
<td>4628.54167</td>
<td></td>
<td>0.001171418</td>
<td>4880.91667</td>
</tr>
<tr>
<td></td>
<td>0.002135293</td>
<td>2224.26042</td>
<td></td>
<td>0.001094188</td>
<td>4559.125</td>
</tr>
<tr>
<td></td>
<td>0.002064848</td>
<td>2150.88542</td>
<td></td>
<td>0.001071039</td>
<td>2311.3333</td>
</tr>
<tr>
<td></td>
<td>0.002058861</td>
<td>8578.58333</td>
<td></td>
<td>0.001050883</td>
<td>4378.56667</td>
</tr>
</tbody>
</table>
Business landscape

• Market
 – Rare disease, orphan status for AITL

• Competition
 – Several approved agents for T cell lymphoma, all with low response rates and short progression free survival, remains unmet medical need

• Unique aspects of this product
 – Targeting chemokine/chemokine receptor pathways for treatment of AITL using a library of CXCR13 ligands for:
 • A biotherapeutic
 • Chimeric Antigen Receptor targeting
Next Steps for Mutant CXCL13 Variants

• Express, purify, characterize 102 CXCL13 variants
 – Assay for Ca$^{2+}$ flux to test CXCL13 variants and confirm antagonism
 – Characterize IC$_{50}$ and k_{off} rate
• Molecular biology of the most potent CXCL13 antagonist-IgG1.
 – Expression, purify, and characterize therapeutic properties (IC$_{50}$, PK, ADCC)
• Molecular biology for CAR T
 – In vitro testing for efficacy
• Test biotherapeutic and CAR T in AITL-PDX model?