Pre-Clinical Candidate for Orphan Genetically-defined Seizure Disorders

- Orphan pediatric indication with life-long chronic (1-100) daily seizures
- Standard of care (SOC) is inadequate
- Novel mechanism of action for first-in-class small molecule NT-125
- NT-125 reduces seizures by 60-70% in animal proof-of-concept
- Lead optimization is gating to pre-IND meeting
TEAM

Science

Angélique Bordey, PhD
Professor
Vice-Chair for Research Neurosurgery, Yale
Science Lead
MS-PhD in Neuroscience
MS in organic chemistry
angelique.bordey@yale.edu

Anne Anderson, MD
Associate Professor Pediatrics-Neurology Baylor College Med.
TSC Clinics Texas Children Hospital

Clinical

Jo Anne Nakagawa
Director, Clinical Projects & TSC Liaison at the Tuberous Sclerosis Alliance (TSA)
Liaison between TSA and the 68 TSC Clinics, Project leader of the TSC natural history database (2000 participants)

Business

David Lewin, PhD
Dir. Bus. Dev. Yale, OCR
Advisor and IP Management
david.lewin@yale.edu
Tuberous Sclerosis Complex, a genetically-defined (TSC1/TSC2) life-long epilepsy disorder

TSC diagnosis: First by pediatricians, referred to specialists based upon presentation

- 1-100 Daily Seizures: 85% of all patients
- Median age of seizure onset: 3 months
- Skin patches: dermatologist, then neurologist

Characteristics

- Brain Malformations
- Childhood onset seizures
- Life-long
- AED resistant

Current SOC

- Brain surgery
- Everolimus

Efficacy

- Limited efficacy
- Side-effects

Comorbidities

- Insomnia
- Learning disabilities
- Behavior issues (e.g., anxiety)

- High burden on care givers and patients: We need new drugs to treat seizures and comorbidities
- Our small molecule rescues brain malformations leading to seizure reduction in preclinical studies
TSC is an orphan disorder with a high societal cost

- Incidence: 1.6 million worldwide
 1/6,000 new births
 50,000 TSC pts with epilepsy in the US
 30,000-40,000 TSC pts with drug-resistant epilepsy (60-80% all pts)

- Cost of the SOC, Everolimus (Afinitor): $16K/mo/pt, $192K/year/pt
 For 30,000 patients this represents a potential US market opportunity of $5-6B/year
Inadequate SOC - Established clinical trial design

Brain surgery: Only possible in 10-15% of pts
 - Seizures remain in ~40% of operated pts
 - Seizures return in 50% of seizure-free pts post-op

Everolimus: Limited efficacy (40% of pts respond at high dose)
 (Afinitor) Major side-effects

We will use everolimus trial’s design and clinical endpoints

Primary endpoint Phase III: Percent change in seizure frequency from baseline
 (Time Frame: Baseline (8 wks), Core phase (18 wks))

Secondary endpoints: Impact on behavior and quality of life (and more)
Filamin A (FLNA) is increased in TSC patients and mouse models

TSC patients

Our mouse model:
Definitive and only model for TSC seizures
• Hsieh, Bordey 2016
• Validated through collaborations with Biotechs

Our mouse model:
Zhang, Bordey, 2014, 2020
Targeting FLNA offers a novel mechanism of action

- FLNA is an actin-binding molecule with 24 Ig domains that has dozens of binding partners
- Normalizing or blocking FLNA shrinks brain malformations.

![Diagram showing the mechanism of action involving FLNA and its effect on brain malformations and seizures.]

- Mutant TSC1/TSC2 leads to increased Rheb, which in turn increases mTOR and Filamin A.
- Increased cell size and brain malformations are inhibited by Everolimus, acting here.
- NT-125 acts here to prevent seizures.

Seizures
FLNA Target validation in our mouse model: *Flna* shRNA in utero prevents brain malformations and seizures

Abnormal cell growth reduced

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>TSC disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Control shRNA</td>
<td>Control shRNA</td>
</tr>
</tbody>
</table>

Seizure activity decreased

Mean seizure number/day

![Seizure activity decreased graph](image)
Animal proof-of-concept
FLNA modulator NT-125 reduces seizures and abnormal cell growth

Neonatal treatment

Seizures reduced

![Graph showing reduced seizures with NT-125 compared to Vehicle](image)

Adult treatment

Seizures reduced

![Graph showing reduced seizures with NT-125 compared to Vehicle](image)

Abnormal cell growth reduced

![Comparison of abnormal cell growth](image)

NT-125 Room for improvement

- PK properties: 80% BBB permeability, high solubility, but short half-life (2 hrs)
- Goal: improved half-life once daily injection, liquid formulation for pediatric administration
Lead optimization: Synthesis of new FLNA modulators, NT-210 series

CRO: Dr. Van Zandt at NEDP (New England Discovery Partners)

High- to medium-throughout assays to test:

FLNA binding:
- Competitive assay
 - (Click chemistry with NT-125)

Effect on ribosome biogenesis:
- Western blot in cell lines for ribosome protein
 - S6 reduced by Flna shRNA and NT-125

Effect on cell growth:
- In our mouse model

IP Status: Yale patents filed for
- Use of NT-125 and analogs to treat epilepsy
Mouse *in vivo* efficacy studies of NT-210 series will enable our IND application

Mouse in vivo studies
- Dosing range in animal
- MRI
- Monitor daily seizures
- Change in seizure frequency

Translate well into clinical studies

Genetically-Defined Patient Population

Clinical endpoints
- 4 months dosing safety
- MRI
- Monitor daily seizures
- Change in seizure frequency
Lead optimization plan is gating to pre-IND meeting

Completed
- Target validation
 - shRNA
 - Small Molecule
- Preliminary PK data
- Clinical collaboration
- Animal model in place
- Clinical endpoints established

Commercial Interest:
- Numerous confidential meetings with biotechs and several VC’s
 - all satisfied with Yale model
 - all aware of published NT-125 findings
 - all interested in vivo results with NT-210 series

Months 1-12

Deliverables Part 1 – $200K
- MedChem with NEDP ($110K)
- PK/BBB data in mouse oral delivery ($20K)
- Preliminary tox microsomal stability ($10K)
- Efficacy of 2 analogs on seizures via oral delivery via CRO using Yale Model ($60K)

Months 12-24

Deliverables Part 2 – $100K
- Pre-clinical Formulation
- Confirm PK/BBB

Months 24-36

Partnering After Blavatnik
- Final Tox study
- Pre-IND package for Dr. Anderson (led Phase 1b/2a of NT-210 lead compound)

Deliverables
- Pre-IND Formulation
- Clinical collaboration
- Animal model
- Clinical endpoints

Deliverables
- Pre-IND Formulation
- Clinical collaboration
- Animal model
- Clinical endpoints
Back-ups/References/links
Competition

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Efficacy</th>
<th>Formulation</th>
<th>Side-effects</th>
<th>Mode of action</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional AED</td>
<td>Seizure reduction in 30-40% pts</td>
<td>Liquid, pill,</td>
<td>e.g., Sleepiness, nausea depending on the drug</td>
<td></td>
<td>several</td>
</tr>
<tr>
<td></td>
<td></td>
<td>suppository</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everolimus (SOC) (Afinitor)</td>
<td>40% pts with >50% seizures</td>
<td>Liquid suspension</td>
<td>Many and serious: e.g., stomatitis, diarrhea, infections (bone loss)</td>
<td>mTOR inhibitor</td>
<td>Novartis</td>
</tr>
<tr>
<td></td>
<td>reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under development</td>
<td>Unknown</td>
<td>unknown</td>
<td>Unknown but widespread expression</td>
<td>mGluR5 antagonist</td>
<td>Noema Pharma</td>
</tr>
<tr>
<td></td>
<td>Previously developed by Roche,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>but failed phase II for Fragile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidiolex (cannabidiol)</td>
<td>Age 1-57 years, 201 pts</td>
<td>Liquid solution,</td>
<td>serious: e.g. diarrhea, suicidal thoughts, elevated liver enzymes, sleepiness, fever, vomiting, rash</td>
<td>Cannabinoid</td>
<td>Greenwich</td>
</tr>
<tr>
<td></td>
<td>48% reduction (low dose)</td>
<td>twice daily</td>
<td></td>
<td>receptor</td>
<td>Biosciences Inc.</td>
</tr>
<tr>
<td></td>
<td>47% reduction (high dose)</td>
<td></td>
<td></td>
<td>mTOR inhibition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30% reduction (placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT-125 analogs</td>
<td>To be tested</td>
<td>To be determined</td>
<td>None based on NT-125 (Alzheimer’s disease trial)</td>
<td>FLNA modulator</td>
<td>Yale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Mode of action**
- **Company**

- **Mode of action**
- **Company**

- **Mode of action**
- **Company**