Therapy for Pantothenate Kinase-Associated Neurodegeneration (PKAN)

Choukri Ben Mamoun
Medicine & Microbial Pathogenesis
Yale

https://www.dailymail.co.uk
PKAN Genetic Disorder

Neurodegenerative disease that can lead to:
- Parkinsonism
- Dementia
- Inability to control muscle function
- Death

- First report: 1922 – No treatment to date
- Types: Classical (3.5 y) and Atypical (>10 y)
- Prevalence: 1-3/million people worldwide
- Autosomal recessive:
 - Pantothenate Kinase 2 (PanK2)

https://news.ohsu.edu/2019/10/29/
PanK2 loss of function → PKAN

Pantothenate (Vitamin B5)

\[
\text{\begin{align*}
\text{H}_3\text{C} & \text{CH}_3 \\
\text{HO} & \text{HO}
\end{align*}}
\]

4’-Phosphopantothenate

\[
\text{\begin{align*}
\text{HO-P} & \text{O} \\
\text{O} & \text{HO}
\end{align*}}
\]

Co-enzyme A

- PanK1
- PanK2 \(\times\)
- PanK3

PANK2

- Mitochondrial PanK enzyme
- The major active PANK isoform in the human brain
PROBLEM & SOLUTION

Pantothenate (Vitamin B₅)

- PANK1/2/3
- 4'-Phosphopantothenate
- PPCS
- 4'-Phosphopantothenoyl-L-cysteine
- PPCDC
- 4'-Phosphopantetheine
- COASY
- 4'-Dephospho-CoA
- COASY
- CoA

PanK3 activators
- VTAC1-9

Disrupted

stored
HUMAN PANK3 ACTIVATORS

PanK Modulators Screening cascade

<table>
<thead>
<tr>
<th>Step</th>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Completed | Assay Development
Developed ATP-based high-throughput screen |
| 2 | Completed | PanK modulators
156,000 compounds screened |
| 3 | Completed | Lead Identification
9 activators of human PanK3
VTAC1-9: 2.2 nM - 268 nM |
| 4 | Pending | Preclinical Studies
Cell-based assays and mouse models of PKAN |
| 5 | Future | Clinical Testing
Conduct clinical trials |

FUNDING

PITCH
2017 - 2020
($736,000)

SEED FUNDING
(Blavatnik)

VENTURE CAPITAL

IP: Yale 63/043,534 valid until 2040

Funding

Assay Development:
- 156,593 Compounds
 - Hits: 268
 - Inhibition of Fungal PanK
 - No inhibition of Human PanK3
- Med. Chem. Triage: 76
- Chemotypes: 12
- 415 analogs
- 86 PTZ
- 9 ACT
HuPanK3 Activators:
1 Chemotype, 9 Compounds and 2 Modes of activation

Active site activator

\[\text{AC}_{50} \approx 2.6 \text{ nM} \]
\[\text{cLogP} = 2.18 \]
\[\text{MW: 382.466} \]
No toxicity

Allosteric activator

\[\text{AC}_{50} = 4.9 \text{ nM} \]
\[\text{cLogP} = 2.28 \]
\[\text{MW: 297.361} \]
No Toxicity
ASK: $300K - BLAVATNIK
USE OF FUNDS & MILESTONES

AIM 1
Chemistry, Structural Biology & Pharmacology

- Synthetic Chemistry
 - VTAC - hPanK3
- DMPK
 - MDR1-MDCK
 - Permeability >1 x 10^{-6} cm/s
 - *In vivo* pharmacokinetics
 - Brain and plasma c/c

AIM II
Cell-based efficacy in Pank2-deficient cells

- Cellular metabolism
 - CoA
 - Iron
 - Cysteine
 - Mitochondrial biogenesis

AIM III
Efficacy In Mice (Top 2 compounds)

- Humanized mouse model:
 - Create the first mPank2^{-/-} - hPANK3 mouse model
- Neurological and motor function analyses
 - Brain biomarkers
 - Survival
 - Movement
 - Behavioral analysis

$124K + $50K + $126K = $300K

IND/Clinical Candidate
Market Size: ~$360M/year

Potential pricing analogs, based on prevalence and disease severity:

- Vimizim (Morquio Syndrome) - ~$600 K/yr
- Vpriv (Type 1 Gaucher) - $320 K/yr
- Fabrazyme (Fabry’s Disease) - $295 K/yr
- Procysbi (Nephropathic Cystinosis) - $595 K/yr
- If approved, Ferriprox treatment may be priced at $50 – $150 K per year

Assuming ~1,200 patients and price of $300 K/year, market size is ~$360 M annually, and population may increase with improved care
APPLICATIONS

- PKAN
- CoA deficiencies
- Other neurological disorders
 - Parkinson’s disease
 - Alzheimer’s disease
- Anti-aging
SUMMARY

VIRTUS TECHNOLOGY AND COMPETITIVE ADVANTAGE

- Novel Activators
- Novel mode of action
- Novel strategy for treatment of PKAN
- Competitive advantage (IP to 2040)

ASK
$300K
Milestone
Identify a clinical candidate
Goal
Treatment for PKAN
HOPE IS A WAKING DREAM
ARISTOTLE
Thank You
STRATEGIC PLANNING

Pre-clinical

2017-19

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

Clinical

Launch

PITCH

$736K

Private

funding

Strategic partner

Joint Venture

Acquisition

IPO
VIRTUS MANAGEMENT

Stephen Chang: CEO
Ex-CEO, president, chairman of the board of multiple biotech companies

Muhammad Munshi, Yale
Economics Major
Pre-Med
Undergraduate (Senior)

Choukri Ben Mamoun, PhD. Yale
Professor of Medicine and Microbial Pathogenesis
Founder

Jaime Grutzendler, MD Yale
Professor of Neuroscience and Neurology
Scientific advisor

Stephen Chang: CEO
Ex-CEO, president, chairman of the board of multiple biotech companies

Muhammad Munshi, Yale
Economics Major
Pre-Med
Undergraduate (Senior)

Choukri Ben Mamoun, PhD. Yale
Professor of Medicine and Microbial Pathogenesis
Founder

Jaime Grutzendler, MD Yale
Professor of Neuroscience and Neurology
Scientific advisor

Akansha Bhargava, MD
Blavatnik Fellow, Yale
Manager

Tom Gerson: Ex-CFO of 3 biotech companies (2 Yale spinoffs)
Advisor: Finance, business strategy and operations

Akansha Bhargava, MD
Blavatnik Fellow, Yale
Manager

Tom Gerson: Ex-CFO of 3 biotech companies (2 Yale spinoffs)
Advisor: Finance, business strategy and operations

Mark S. Plummer, PhD
Scientific Manager
Advisor: Chemistry

John Puziss, Yale
OCR contact
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Mechanism</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBP-671</td>
<td>CoA Therapeutics (BridgeBio)</td>
<td>Inhibitor of Acetyl-CoA feedback inhibition of PanK</td>
<td>Preclinical (reported toxicity)</td>
</tr>
<tr>
<td>CoA-Z</td>
<td>OHSU</td>
<td>4’-phosphopantetheine pPanSH</td>
<td>Phase 2 (recruiting)</td>
</tr>
<tr>
<td>Ferriprox</td>
<td>ApoPharma</td>
<td>Iron chelating agent (Thalassemia)</td>
<td>Phase 3 (efficacy modest)</td>
</tr>
<tr>
<td>(deferiprone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosmet-PTT</td>
<td>Retrophin</td>
<td>Prodrug of PTT</td>
<td>Discontinued</td>
</tr>
<tr>
<td>TM-1803</td>
<td>TM3 Therapeutics</td>
<td>Prodrug of PTT</td>
<td>Discontinued</td>
</tr>
</tbody>
</table>

- Select patients with atypical disease have benefited from high doses of pantothenate
- Symptomatic to manage muscle spasms are available (e.g., baclofen, trihexyphenidyl)
TARGET PRODUCT PROFILE

<table>
<thead>
<tr>
<th>Assay</th>
<th>Desired Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potency</td>
<td></td>
</tr>
<tr>
<td>AC$_{50}$ hPanK3</td>
<td>< 100 nM</td>
</tr>
<tr>
<td>AC$_{50}$ hPanK1/hPanK2</td>
<td>< 100 nM</td>
</tr>
<tr>
<td>Selectivity</td>
<td></td>
</tr>
<tr>
<td>IC$_{50}$ hPanK1/2/3</td>
<td>> 100 x AC$_{50}$</td>
</tr>
<tr>
<td>IC$_{50}$ human protein kinases</td>
<td>> 100 x EC$_{50}$</td>
</tr>
<tr>
<td>Cyto-toxicity</td>
<td></td>
</tr>
<tr>
<td>CC$_{50}$ HepG2, HEK293, HeLa, THP1 and hTERT</td>
<td>> 100 x AC$_{50}$</td>
</tr>
<tr>
<td>in vitro ADME</td>
<td></td>
</tr>
<tr>
<td>Kinetic Solubility (pH 7.4)</td>
<td>> 10 µM</td>
</tr>
<tr>
<td>Metabolic Stability (liver microsomes)</td>
<td>t$_{1/2}$ > 1h @ 0.1 µM</td>
</tr>
<tr>
<td>Permeability (Caco-2)</td>
<td>> 3.0 x 10$^{-6}$ cm/s</td>
</tr>
<tr>
<td>Off-target</td>
<td></td>
</tr>
<tr>
<td>hERG binding</td>
<td>< 50% @ 30 µM</td>
</tr>
<tr>
<td>CYP binding (8 CYPs)</td>
<td>< 50% inhibition @ 100 µM</td>
</tr>
<tr>
<td>PK</td>
<td></td>
</tr>
<tr>
<td>IV and PO dosing</td>
<td>[drug]${plasma}$ > EC${99}$</td>
</tr>
<tr>
<td>determine %F, AUC, t$_{1/2}$</td>
<td></td>
</tr>
<tr>
<td>in vivo</td>
<td></td>
</tr>
<tr>
<td>MTD</td>
<td>No toxicity</td>
</tr>
<tr>
<td>Efficacy: oral dose that delivers</td>
<td>Tx of PANK1$^{-/-}$ PANK2$^{-/-}$ results in:</td>
</tr>
<tr>
<td>[drug]${plasma}$ > AC${99}$</td>
<td>Body weight: wild type level (>3x vehicle (~5g KO vs 15 to 30g WT)</td>
</tr>
<tr>
<td></td>
<td>Survival: wild type % survival (50 days KO vs 150 days WT)</td>
</tr>
<tr>
<td></td>
<td>CoA in forebrain: WT level (~40 pmol/mg/wet weight KO vs ~55 pmol/mg/wet weight WT</td>
</tr>
<tr>
<td></td>
<td>CoA in hindbrain: WT level (~60 pmol/mg/wet weight KO vs ~110 pmol/mg/wet weight WT</td>
</tr>
<tr>
<td></td>
<td>% Time Moving: WT level (~5% KO vs ~75 WT)</td>
</tr>
<tr>
<td></td>
<td>Path traveled (m): WT level (~1m KO vs ~15m WT)</td>
</tr>
</tbody>
</table>
IN VITRO SCREENING CASCADE

VTACs 1-9 → PKAN Fibroblasts: CoA → MDR1-MDCK1 Permeability assay
IRON Levels → Go / No-Go

In vitro assays
GO

Co-crystallization SAR & New design
No-Go

11/1/2021 Confidential
PK and \textit{in vivo} screening cascade

\textbf{In vivo PK Safety} \hspace{1cm} \textbf{GO}

\textbf{PKAN humanized mouse model} \hspace{1cm} \textbf{Lead Clinical candidate}

\textbf{No-Go} \hspace{1cm} \textbf{Go / No-Go}

\textbf{Humanized mouse model of PKAN}

\texttt{Pank2}^{n/n} \hspace{0.5cm} \texttt{mPank3}^{-/-} \hspace{0.5cm} \texttt{HuPank3}^{+/+} \hspace{0.5cm} \texttt{SynCre+}

\texttt{Brain biomarkers CoA, dopamine…}

\texttt{Survival}

\texttt{Movement & distance traveled}

\texttt{Behavioral}

\texttt{MRI (no iron accumulation)}
• PZ-2891 --> BBP 671

• BridgeBio / CoA pharmaceuticals (subsidiary)

• IND-enabling studies ongoing
 • Planning to file in 2020 in Organic Acidaemias
 • Prevalence: 5 in 100,000 births (200,000 global patients)

• “In non-clinical toxicology studies, we have observed **dose-limiting corneal toxicity** in a 14 day repeat dosing experiment in dogs. This BBP-671 compound did not achieve a NOAEL* in these test subjects; however a NOAEL was achieved in rodents.” – most recent S-1 filed May 24, 2019

• *: No-observed adverse effect level
The lead pantazine, PZ-2891, inhibited PANK3 with nM affinity, whereas the inactive PZ-3067 had no effect (Fig. 2a).

Sharma et al., 2018 PMID: 30352999
PKAN

Presents in two forms:

- Classic:
 - Starts around age ~3 ½ and patients require a wheelchair by mid-teens.
 - Inability to walk between 10-15 years after the beginning of symptoms
 - When severe, PKAN can result in muteness, an inability to eat or control muscle twisting and contractions, as well as, ultimately, a loss of the ability to breathe

- Atypical:
 - Occurs after age 10 and within the 1st 3 decades of life
 - Inability to walk typically occurs 15 to 40 years after symptoms
 - Psychiatric symptoms

Currently, no disease-modifying therapeutic is available