Fyn & Pyk2 Kinase Inhibition for Alzheimer's Disease

Stephen M. Strittmatter, M.D., Ph.D.

Cellular Neuroscience, Neurodegeneration & Repair Program
Departments of Neurology & Neuroscience
Synapse Damage Pathway in Alzheimer’s Disease

• No Disease-Modifying Therapy for AD
• Pharma focus and failures relate to Aβ levels *per se*
• Amyloid β Oligomers (Aβo) damage synapses in AD to cause symptoms
• Discovered molecular cascade
• Pyk2 genetically linked to AD risk
• Fyn or Pyk2 kinase blockade restores synapses and memory to AD mice

Biology documented by our lab in multiple high profile publications and supported by numerous competitive NIH grants
Efficacy of Fyn and Pyk2 Inhibition in Preclinical Models

- We have just completed a Phase 2a Trial with Fyn Inhibitor for AD with AZ and NIH
- Limited dose due to platelet suppression and interstitial pulmonary fibrosis, and Fyn null phenotypes
- Therapeutic index of 2 extrapolated from mouse
- Data analyses now in progress, to be reported in July

Similar rescue of memory and synapses in Pyk2 null state (data not shown)
Fyn/Pyk2 Inhibition with Robust Therapeutic Index

- Dose-limiting side-effects with complete single kinase inhibition
- Synergistic cross-phosphorylation and co-activation of Fyn and Pyk2
- Partial inhibition of both enzymes anticipated to be efficacious with broad therapeutic window

- Option A: one compound with balanced dual inhibition
- Option B: Proprietary Pyk2 inhibitor compound +/- existing Fyn inhibitors

- Blavatnik Project to Develop SAR and IP for Dual Pyk2/Fyn or Pyk2 inhibitors
Current Blavatnik Fund & CRL Contract

<table>
<thead>
<tr>
<th>Description</th>
<th>Complete</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Virtual screen using commercial deck against Fyn and Pyk2</td>
<td>Dec-17</td>
<td>CRL</td>
</tr>
<tr>
<td>2: Compound provision for 500 selected compounds</td>
<td>Feb-18</td>
<td>CRL</td>
</tr>
<tr>
<td>3: Biochemical assay development for Fyn and Pyk2</td>
<td>Feb-18</td>
<td>CRL</td>
</tr>
<tr>
<td>4: Compound handling</td>
<td>Feb-18</td>
<td>CRL</td>
</tr>
<tr>
<td>5: Profile 100 compounds at 1 and 10 µM in both assays</td>
<td>Mar-18</td>
<td>CRL</td>
</tr>
<tr>
<td>6: Hit expansion by purchase & synthesis of close analogues, including biochemical retest</td>
<td>Ongoing</td>
<td>CRL</td>
</tr>
<tr>
<td>7: Selectivity panel, 20-30 major kinases at 1 µM</td>
<td></td>
<td>CRL</td>
</tr>
<tr>
<td>8: Cellular assay development for Fyn and Pyk2</td>
<td>Initiated</td>
<td>CRL</td>
</tr>
<tr>
<td>9: 1 week compound profiling cellular assays</td>
<td></td>
<td>CRL</td>
</tr>
<tr>
<td>10: DMPK analysis for 10 compounds</td>
<td></td>
<td>CRL</td>
</tr>
<tr>
<td>11: Test dual Fyn/Pyk2 kinase inhibitors with highly predictive synapse-specific preclinical in vitro AD models</td>
<td></td>
<td>Yale</td>
</tr>
</tbody>
</table>

Test synapse stability by imaging and plasticity by LTP electrophysiology
Virtual Screening

<table>
<thead>
<tr>
<th>Method</th>
<th>Hits selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure based VS (2DQ7)</td>
<td>889</td>
</tr>
<tr>
<td>Structure based VS (3FZP)</td>
<td>219</td>
</tr>
<tr>
<td>Structure based VS (3FZS)</td>
<td>47</td>
</tr>
<tr>
<td>E-pharmacophore</td>
<td>77</td>
</tr>
<tr>
<td>Ligand based pharmacophore screening</td>
<td>495</td>
</tr>
<tr>
<td>Hit expansion</td>
<td>79</td>
</tr>
<tr>
<td>Bayesian classification</td>
<td>90</td>
</tr>
<tr>
<td>ROCS 3-D shape screening</td>
<td>453</td>
</tr>
</tbody>
</table>

REMOVED
- Duplicates
- Hits with
 1. Structural alerts
 2. LogP ≥ 4.5
 3. MW > 450 & MW < 250
 4. Polar Surface Area > 120

522 HITS

16 FYN-PYK2 shared

348 HITS OBTAINED from VENDORS
Hit Selection from Virtual Screen

FYN-PYK2 shared hit example from E-pharmacophore results

Figure legend: protein amino acids shown in green; ligand based pharmacophore features shown in green (lipophilic features), orange (aromatic moiety), blue (hydrogen bond donor group), red (hydrogen bond acceptor group); excluded volumes indicated with blue spheres and hydrogen bonds reported with yellow, dashed lines.
Assay Development: ADP Glo™ FYN & Pyk2 assays

Assay Performance (Z')

- **Z' FYN**
- **Z' PYK2**

- **FYN**: mean +/- SD = 0.65 +/- 0.05
- **PYK2**: mean +/- SD = 0.66 +/- 0.06

Expected potencies for known Fyn and Pyk2 inhibitors

Cell-based assays being developed in Jurkat cells with endogenous Fyn and Pyk2
Fyn/Pyk2 Inhibitors

Inhibition at 10µM

% Fyn inhibition @ 10µM

% Pyk2 inhibition @ 10µM
Hit expansion

Selected compounds for hit expansion

Series 1: Aza-indole

- **502413** could be developed for PYK2 inhibition and possibly dual inhibition
- Synthetic tractability:
 - Cores structures (Azaindole-R1) can be easily accessed
 - Large arrays can be generated from reductive amination to introduce R2

Series 2: Amino-pyrazole

- **502468** could be developed as dual inhibitor
- Synthetic tractability: arrays of analogues can be generated from amide coupling
A rapid hit expansion has been completed
The central ring SAR was probed using unsaturated piperidine and piperazine
Series 2: CR000502468 Hit expansion

Amino-pyrazole scaffold

- Chemistry and purification method have been validated to synthesise the desired targets

CR000502468
FYN IC₅₀ 16 µM
PYK2 IC₅₀ 23 µM
A focused set of compounds based on SAR knowledge of the pyrazole urea scaffold will also be synthesised.
• **Series 1:**
 - 45 compounds were synthesised
 - Unsaturated piperazine is critical to retain PYK2 potency
 - Small structural changes on the phenyl substituents can alter potency against PYK2 and FYN

• **Series 2:**
 - 10 compounds have been synthesised and characterised
 - This array will be tested shortly against FYN and PYK2
 - 502468 will be modified based on structure activity knowledge of pyrazole ureas

Hit Expansion Summary

CR000502413

CR000502468

PYK2 IC$_{50}$ 6 nM
Anticipated Results by September

- Evaluate focused compound library and analogues for potency and selectivity to develop SAR profile
- Kinase selectivity results
- Compound activity in cellular assay
- Pharmacologic ADME properties of inhibitors
- IP protection
Proposed Blavatnik Continuation

• Decision point before September
 – Option A (Dual) *versus* Option B (Proprietary Pyk2)
 – Advance to DMPK work *versus* further SAR

• Use of Second Year ($300K) Funds
 – PK/PD, dose-ranging toxicology for lead(s)
 – Further medicinal chemistry, as indicated
 – Continued contract with CRL

 – Test synapse and AD mouse memory at Yale
 (no additional cost)
Synapse Damage Pathway in Alzheimer’s Disease

- First Disease-Modifying Therapy
- Protect synapses in AD
- Pyk2 genetically linked to AD risk
- Fyn or Pyk2 kinase blockade restores synapses and memory to AD mice

- Develop SAR and IP for Dual Pyk2/Fyn or Pyk2 inhibitors
- Progress during last 6 months
- Continue advance of chemistry and IP to partnership

Biology documented by our lab in multiple high profile publications and supported by numerous competitive NIH grants