Discovery and Optimization of Novel Compounds Targeting Programmed Ribosomal Frameshifting in RNA Viruses

Junjie Guo

Department of Neuroscience
Yale Center for RNA Science and Medicine
Yale University School of Medicine
Programmed ribosomal frameshifting is prevalent in RNA viruses

A platform to rapidly identify drug candidates targeting viral FSEs

Equine arteritis virus FSE

HIV-1 FSE

SARS-CoV-2 FSE

West Nile virus FSE

Totiviruses, Astroviruses, Picornaviruses, Alphaviruses, Influenza A Virus, etc.

HEK293T cells
Add compounds
Transfect reporter
24 hr
30 min
24 hr
Automated imaging & quantification
Validation by luciferase assays

Antiviral testing
Optimization
In vivo testing
Advantages of FSE-targeting drugs over existing classes of antivirals

- **Rapid screen design and lead identification**
 Only the viral genome sequence is needed. Suited for future viral pathogens.

- **Broad spectra**
 The same compound inhibits frameshifting in most known beta coronaviruses, and possibly future emerging ones.

- **Robustness**
 Natural mutations that confer resistance are unlikely to arise.

- **Targeting multiple viral components simultaneously**

![Diagram showing targeting of multiple viral components](image)
Discovery of a SARS-CoV-2 frameshift inhibitor

- 4,434 approved drugs and drug-like compounds screened
- Highly robust microscopy screens: $Z' = 0.91-0.95$
- Rapid validation by an orthogonal, luciferase-based assay
- 1 frameshift enhancer (ivermectin) and 1 inhibitor (merafloxacin) validated

* Provisional patent application filed (Yale Case OCR 7981) “Compounds and Compositions for Disrupting Programmed Ribosomal Frameshifting”
Use of Blavatnik funding

Part I Optimization of merafloxacin

- Optimize for stronger potency and antiviral activity
- 2 cycles of compound design and synthesis
- 25-30 compounds per cycle
- ~$54,000 total (New England Discovery Partner)

Part II Expanded screening for additional scaffolds

- Merafloxacin was identified from a small-scale screen of 4,434 compounds
- Plan to screen Life Chemicals Diversity Collection (126,639 compounds)
- Search for frameshift modifiers with higher activity and broader spectra
- ~$55,000 total (Yale Center for Molecular Discovery, ~50% subsidized)

Expected outcomes: startup formation; licenses to pharmaceutical companies

Future plan: In vivo testing, administration (IV vs. intranasal), pharmacokinetics
Our Team

Junjie Guo, PhD
PI
Assistant Professor
Neuroscience

Brett Lindenbach, PhD
Consultant
Associate Professor
Microbial Pathogenesis

Yu Sun, PhD
Staff scientist
Neuroscience

Yulia Surovtseva
Consultant
Director, YCMD

Laura Abriola
Staff scientist
YCMD