RegenaVision
Retinal Therapies to Restore Vision
TEAM

Mark Fields, MPH, PhD
Assistant Professor
Yale Ophthalmology and Visual Science

Hui Cai, MD, PhD
Research Scientist
Yale Ophthalmology and Visual Science

Lucian Del Priore, MD, PhD
Chair and Vitreoretinal Specialist
Yale Ophthalmology and Visual Science

Denton Hoyer, PhD
Medicinal Chemist
Yale Center for Molecular Discovery

Gary Novack, PhD
Pharma·Logic Development Inc.
Consultant and board certified clinical pharmacologist
No Approved Therapies to Treat Dry Age-Related Macular Degeneration

Disease Overview

• Thinning of macula at the functional center of retina
• Results in blurred vision and, eventually, blindness
• Affects people over the age of 50
• ~11 Million patients in US
• ~196 Million worldwide
• Advanced AMD or geographic atrophy characterized by *RPE cell death

Disease Drivers

• Oxidative Stress
• Mitochondrial Dysfunction
• Development of Drusen (lipid deposits under retina)
• Therapies targeting mitochondrial dysfunction are the best approach to reduce inflammation and disease progression

*RPE, Retinal Pigment Epithelium
Our Goal is to Develop Eye Drops to Treat Dry AMD

Target Product Profile

New small molecule eye drops that:

- Treat early to intermediate dry AMD
- Reach the back of the eye
- Protect *RPE from oxidative damage and mitochondrial dysfunction
- Has a known safety profile and DDIs

Eye drop formulation will provide a convenient, patient compliant, and non-invasive mode of delivery

RPE, Retinal Pigment Epithelium
M484: a candidate molecule for dry AMD

- **IP**
 - Lead candidate **M484 and 2 novel chemical entities were identified** via phenotypic high-throughput screen (Cai et al., 2019).
 - Composition is off patent for M484, PCT application WO2019136466A1 with broad utility claims was filed in 2019 for the treatment of ocular diseases.
 - **M484** is FDA-approved as a topical antifungal medication and its composition is off-patent.
 - **M484** validated in RPE-based AMD assays (Cai et al., 2019).

- We have **successfully formulated M484 for ocular delivery**.
M484: Presumed Mechanism of Action

HIF prolyl hydroxylase inhibitor improves mitochondria function

Metabolic Stress

↓

Reactive oxygen species production

↓

HIF-1 stabilization

↓

HIF-1 prolyl hydroxylase inhibition

M484

↑ Mitochondrial Function

↑ Neuroprotection

Ma et al., 2013; Liu et al., 2016; Cai et al. 2019

HIF-1 - Hypoxia-inducible factor 1
HIF-PHD - Hypoxia-Inducible Factor Prolyl Hydroxylase
TBHP - Tert-butyl hydroperoxide

RPE Exposure to Oxidative Stress

ATP Production

HIF-1 stabilization

↑ Mitochondrial Function

↑ Neuroprotection
M484 Successfully Delivered to the Retina and RPE in Rat and Rabbit

Topical ocular delivery of M484 still in retina at 45 nM conc. at 24 h post-treatment

- An efficacious dose delivered to retina at 24 hrs based on \textit{in vitro} EC\textsubscript{50} (>45 nM)
- No abnormal observations noted in the eye at 24 hrs

Hydroxypropyl-β-cyclodextrin based formulation
- Well tolerated in eye
- Increases bioavailability
- Excellent water solubility achieving high concentrations within acceptable osmolality

\[\text{R}=\text{CH}_2\text{CH}(-\text{Me}) \]
M484 in Preclinical Development

Efficacy data in blue light damage model of geographic atrophy in rat (topical delivery of M484) available this month

As determined by:

- Electroretinography (ERG)
- Optical coherence tomography (OCT)
- Histopathology
- Polymerase chain reaction (PCR)

Fields lab and Comparative Biosciences, Inc.
Competitive Landscape

M484 would offer significant advantages over current competitors in the form of a more convenient ROA and broader patient population.

<table>
<thead>
<tr>
<th></th>
<th>APL-2</th>
<th>Zimura/ARC1905</th>
<th>Elamipretide</th>
<th>M484</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Ph III</td>
<td>Ph III</td>
<td>Ph IIb</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Study population</td>
<td>GA secondary to Dry AMD</td>
<td>GA secondary to Dry AMD</td>
<td>AMD w/ non central GA</td>
<td>Early to intermediate Dry AMD</td>
</tr>
<tr>
<td>ROA</td>
<td>Intravitreal injection</td>
<td>Intravitreal injection</td>
<td>Subcutaneous Injection</td>
<td>Topical</td>
</tr>
<tr>
<td>MOA</td>
<td>Complement Pathway C3 therapy</td>
<td>Complement Pathway C5a therapy</td>
<td>Mitochondrial dysfunction/ROS</td>
<td>Mitochondrial dysfunction/ROS</td>
</tr>
<tr>
<td>Primary endpoints</td>
<td>• Change in total area of GA Lesion(s) in the study eye (in mm2) as Measured by Fundus Autofluorescence (FAF) (Baseline, 12 months)</td>
<td>• Mean rate of change in GA over 12 months (measured at three time points: Baseline, Month 6, and Month 12)</td>
<td>• Change in low-luminance best-corrected visual acuity</td>
<td>Considerations: • Change in low-luminance best-corrected visual acuity • Rate of anatomic progression of geographic atrophy</td>
</tr>
<tr>
<td>Data readout from phase 2 trials</td>
<td>• GA growth rate reduction: 29% and 20% compared to sham depending on dosing regiment</td>
<td>• GA mean growth reduction: ~27% compared to sham</td>
<td>• N/A</td>
<td>• N/A</td>
</tr>
</tbody>
</table>
Our proposal: M484 lead optimization

1. Synthesis of key derivatives
 - Optimize for potency and develop novel compositions of matter and strengthen the IP position
 - Med. Chem. – Denton Hoyer, Ph.D.
 - $100K

2. Target identification chemistry
 - Determine where a linker may be added for protein pull-down for target identification experiments in-house.
 - YCMD
 - $100K

3. Ocular toxicology
 - 28 Day GLP Toxicology Study of Lead Compound for IND-enabling studies
 - PharmOptima, LLC
 - $100k

Timeline:
- 2-3 months
- 2-3 months
- 4-6 months
Mark Fields, MPH, PhD
203 737 6387
Mark.Fields@yale.edu

Lolahon Kadiri, PhD
203 785 4164
Lolahon.Kadiri@yale.edu

Yale OCR
Business Development