Yale University Innovation Pipeline 2020

Technologies for Partnering

Office of Cooperative Research
ocr.yale.edu
Physical Sciences
Higher Efficiency GaN Laser Diode (LD)

The key factors preventing the widespread use of LD lasers in lighting are:

- Insufficient Power Conversion Efficiency (PCE)
- Aluminium degrades performance and lifetime.

- NP GaN offers 2X higher electrical efficiency (PCE) than commercial State Of The Art LDs.
- Brings LD PCE in line with commercial LEDs.
- NP GaN is Aluminum-free.
- Lowers the minimum current density for emission.
- Allows higher blue/green laser power output (Boosts Optical Field X3).

About Nano Porous (NP) GaN:

- A novel electrochemical etching process alters the optical index of GaN by making it nanoporous.
- This is a commercially viable process that can be implemented in any LD or LED chip facility.

Yale Patent Status:

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu

High Power automotive and lighting applications
Removal of Particulate Contamination by Microfibrils

Existing dry dust decontamination techniques are limited to +10micron particles. Smaller particles can only be removed by techniques that are partially destructive to the substrate and involve cumbersome batch processing treatments. As a result Quality Assurance in cleanrooms and other critical environments is time consuming and affects product yield.

Microfibril technology is a zero-adhesion contact surface that collects impurities and contaminant particles with no damage to substrate features.

- Nondestructive over a full range of surface topologies
- May be designed to a specific cutoff Particle Size Distribution
- Removes 10micron to 100nm particles
- Uptake 10-20 monolayers per surface area.
- Compatible with any surface or contaminant.
- Water or electrostatic cleanable
- Injection molded PDMS roller prototype.

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research (203) 436-3946, richard.andersson@yale.edu
Stable Black Phosphorous epi-wafer

Black Phosphorous 2D thin films promise to surpass Graphene as the most favorable materials for future nano- and opto-electronics thin film solar, photo-detectors, and logical devices.

Current synthesis routes, exfoliation and plasma, face major challenges i) volume, ii) stability and iii) uniformity. Yale inventors have found a way to make high quality wafer-scale deposition possible with no device degradation in air.

Proof of Demonstration:
- Boron Nitride/Black Phosphorous heterostructures
- Suits epi-wafer and flexible substrate production.
- Uniformity is sufficient for thin-film transistors.
- Atomic layer control allows fine bandgap tuning.
- A novel thin-film BN insulator prevents degradation.

Status:
- Composition and method Patent; Seeking fabrication partner for high pressure/ temperature reactor collaboration.

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu

5nm BP thin film growth in a FET transistor device: high carrier mobility, current saturation, tunable bandgap, and angle-dependent properties.
There are two types of thermal infrared cameras in use today. Low cost uncooled microbolometer-based cameras (Vanadium Oxide or Amorphous Silicon) which have a slow time response and are limited to around 30 frames per second (30Hz).

Cooled photon-counting cameras that can measure fast transients (MBE grown superlattices, but they are very expensive and need cooling to low temperatures).

OCR 7572 nano-bolometer is operational at room temperature, high resolution (16 times better) and Megahertz response time which makes a host of applications possible from Advanced Driver Assistance Systems (ADAS) to Machine vision cameras for component testing and thermography.

It uses a well-established material system Ultrathin Silicon-On-Thermal-Insulator (SOTI)

- Demo 2 × 2 Bolometer array of operational wavelength range of 8 -12 μm with pixel dimension of 8 × 8 μm²
- Large integrated bolometer arrays possible with an individual pixel size of 6 × 6 μm² and NETD below 50 mK.

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
1 Nm NanoFiltration Membrane

- A self-assembled Liquid Crystal (LC) monomer film.
- Simple liquid phase roll-to-roll fabrication.
- NanoFilters now have both high permeability and narrow pore size distribution.
 - 0.9 – 1.1 nm ‘cut-off’
- Tortuosity ~ zero.
 - aligned vertical orientation
- Pending patent applications.
- Excellent membrane assembly device candidate:
 - Performance flux tested with mechanical support layer for durability.
 - Free standing/mounted on microporous mechanical supports (25mm diameter).
 - Compatible with EU food and beverage compatibility requirement.
 - The global market potential for <10nm filtration without requiring PTFE is about $40MM, and growing.
 - 1 Nm cutoff is required in high cost microelectronics filtration, gas separation and sensor markets.

Fig. (a) – (e) Manufacturing by soft confinement is based on the self-assembly of discotic or lyotropic small molecule mesophases.

Yale Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
Performance coating for electrowinning

Paint-on anti-corrosion layer reduces power costs and extends the useful life of electroplating anodes.

“Blue Solution” is a self-assembling monolayer of Iridium Oxide that preserves the clean wetted-area of the anode and mitigates soluble lead formation.

- Dip coat application, self-assembles - no electrodeposition.
- **6% reduction in power costs.**
- Several fold increase in useful life of the permanent anode.
- Reduce soluble lead in waste water.
- Prevents buildup of sulfate/chromate layers and flaking.
- Synthesis cost $0.75/m².
- Stable under field conditions (tolerates organics, binders).

Example electrowinning applications: Zinc (lead/silver alloy), Nickel (lead), Copper (lead/antimony)

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research
(203) 436-3946, rrichard.andersson@yale.edu
Unipolar CMOS Technology for High-mobility Semiconductors and Thin-film Transistors

Unipolar CMOS solves the mobility mismatch between NMOS and PMOS by utilizing two n-channels:

- 20x higher electron mobility
- reduced overall channel width
- cheaper fabrication cost (due to fewer masks and fewer fab steps)
- lower power

Two key commercial focus areas:

1. Low-Power, Short-Range IoT Networks
2. Low-Power, Wide-Area Networks

Yale Contact: Richard Andersson, Yale Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu

Wi-Fi transmitter consumes 500 - 700 mW

10,000X Less Power (than WiFi)
RF MEMS Filter for high-speed data processing

NIBS (Nonlocal Inter-band Brillouin Scattering) is a Tunable Narrowband Microwave Filter that overcomes traditional MEMS filter challenges of limited tunability and resolution.

NIBS allows new schemes for small form factor low phase noise microwave filtering.

- Single-sideband NIBS filter allows for tunability from 0.1->100 GHz
- Narrow bandwidths ~10 MHz
- High spur-free and linear dynamic range
- Potential for complete integration

The global MEMS market is projected to grow to $25 billion in 2022, driven largely by growth in RF applications like RF MEMS filters.

US Patents:
- Acousto-optic coupling techniques US20200030849
- Brouillon Laser US20180331490
- Optoacoustic signal processing US20200050030

Yale Contact: Richard Andersson, Yale Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
Electrochemical production of H2O2 from water

- Membrane-less stack, no electrolyte (conventional H2O2 devices require electrolytes).
- Disinfection applications 1) H2O2 accumulation in water, or 2) H2O2 vapor in textiles.
- ALD process and novel oxide films permit compact lamination which is required for efficient H2O2 production, other catalysts cannot achieve this.

Outperforming competitors 20mM H2O2 at >90%
Faradaic Efficiency Fig. (a) above.
Stable current-voltage behavior in single-layer (Ti,Mn)Ox and bi-layer (W,Mn)Ox+(Ti,Mn)Ox coatings Fig (b) above.

Yale Contact: Richard Andersson, Yale Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
General-Purpose Architecture for implantable Brain-Computer Interfaces (BCI)

BCIs record neuronal activity with high fidelity. BCI development is ever moving beyond academic labs to industry, with companies like Kernel, Mindmaze, Longeviti, Neuropace, Neurable, Medtronic, and Neuralink building new generations of fully implantable embedded BCIs.

Implanted devices have 1) device power budgets 2) RF power transmission constraints needed to mitigate the power deposited in brain tissue per strict FDA, FCC, and IEEE guidelines. This has led to a fragmented ecosystem of BCI chip designs. Yet the logic on board these devices is tailored for specific uses (e.g., seizure detection versus data recording, etc.) and for specific brain regions.

HALO realizes a general-purpose architecture.

- Novel interconnect and switch processing elements developed in Manohar lab.
- HALO achieves 4-57× reductions in power consumption versus known software alternatives.
- All processing pipelines operate under 15mW budgets with greatly reduced radio RF bandwidth.
- Evaluation suits full range of neurological disease domains: from neuronal signal extraction to seizure onset detection (epilepsy) and movement intention (paralysis and Parkinson’s disease).
- The HALO team is currently (2020) taping out the first generation of HALO chips.

Yale Contact: Richard Andersson, Yale Office of Cooperative Research (203) 436-3946, richard.andersson@yale.edu
III-V semiconductor integration with GaN

An epitaxial growth method to deposit III–V material Gallium Nitride (GaN) on an Si or silicon-on-insulator (SOI) wafer, or any amorphous template.

- More versatile version of the conventional Template-Assisted Selective Epitaxy (TASE), but designed specifically for GaN.
- Results in high material quality and is compatible with CMOS processes.
- System fabrication costs may be significantly lower than discrete chip packaging approaches.
- **No material defects** due to crystal lattice mismatch with Si.

Method: **(1)** deposition of a textured aluminum nitride seed on SiO2, **(2)** resulting longitudinal growth of gallium nitride single crystals.

Bandgap versus lattice constant of semiconductors of technological relevance. The greater the difference in lattice constant between two materials, the more challenging their co-integration.

Yale Contact: Richard Andersson, Yale Office of Cooperative Research
(203) 436-3946, richard.andersson@yale.edu
DRAGONFLY™ array digitally fuses many images from smaller telescopes together.

- **Low surface brightness imaging:** DRAGONFLY™ is equivalent to a 1 meter aperture refractor (the largest in the world) and it operates at an ultra-fast f/0.39 focal ratio with an enormous (6 square degree) field of view and optical scattering an order of magnitude lower than conventional telescopes.

- **Low cubesat payload:** The segmented nature makes it extremely scalable.

- **Potent wide-area imaging spectrometer:** DRAGONFLY™ employs a tilting narrowband interference filter which means it can isolate the glow from the nearly invisible (to every other telescope) at a specific wavelength. Array can be tuned to the wavelength of interest. This is not possible with conventional, unsegmented telescopes.

Applications: 3D spatial information for astronomy; searches for weak emissions from dark sites at specific wavelengths; Geospatial surveillance and remote sensing.

Contact: Richard Andersson, MEng, Yale University Office of Cooperative Research (203) 436-3946, richard.andersson@yale.edu