Phage Therapy for Restoring Antibiotic Sensitivity to Bacterial Pathogens

OCR Number: OCR 6978

Description:

- Increasing prevalence and severity of multi drug-resistant (MDR) bacterial infections requires novel antibacterial strategies.
- *P. aeruginosa* causes infections that are notoriously difficult to manage due to low permeability of the outer membrane and antibiotic multi-drug efflux (Mex) system which pumps out the antibiotic molecules and confers resistance to several antibiotic classes.
- We isolated a lytic bacteriophage, OMKO1 that utilizes the outer membrane porin M as a receptor-binding site and interferes with Mex mechanism.
- Bacteriophage-induced selective pressure can reverse antibiotic resistance in multi-drug resistant bacteria.
- **Reference:** Chan et al. (2016) Sci Rep
- **Lead Innovator:** Paul Turner, Ph.D.

![Graph showing bacterial growth and phage infection](image)

Fig. 2. Phage OMKO1 selects against the expression of OprM and, consequently, the function of the MexAB/OprM efflux systems. Average cell densities (OD600) of PA01-DmexR and PA01-DoprM over time in the presence of Tetracycline (10 mg/L) and phage OMKO1 (green and red lines). PA01 DmexR (blue, green) overexpresses mex-OprM and readily grows in TET to high densities alone due to active efflux of TET (blue) but is susceptible to phage infection (green). PA01 DoprM grows poorly in the presence of TET (red) but is resistant to phage OMKO1 (yellow).

PI: Paul Turner

Licensing Contact: John Puziss
john.puziss@yale.edu